12 resultados para Electric Generators
em Université de Lausanne, Switzerland
Resumo:
To analyze the neural basis of electric taste we performed electrical neuroimaging analyses of event-related potentials (ERPs) recorded while participants received electrical pulses to the tongue. Pulses were presented at individual taste threshold to excite gustatory fibers selectively without concomitant excitation of trigeminal fibers and at high intensity evoking a prickling and, thus, activating trigeminal fibers. Sour, salty and metallic tastes were reported at both intensities while clear prickling was reported at high intensity only. ERPs exhibited augmented amplitudes and shorter latencies for high intensity. First activations of gustatory areas (bilateral anterior insula, medial orbitofrontal cortex) were observed at 70-80ms. Common somatosensory regions were more strongly, but not exclusively, activated at high intensity. Our data provide a comprehensive view on the dynamics of cortical processing of the gustatory and trigeminal portions of electric taste and suggest that gustatory and trigeminal afferents project to overlapping cortical areas.
Resumo:
Purpose: EEG is mandatory in the diagnosis of the epilepsy syndrome. However, its potential as imaging tool is still under estimated. In the present study, we aim to determine the prerequisites of maximal benefit of electric source imaging (ESI) to localize the irritative zone in patients with focal epilepsy. Methods: One hundred fifty patients suffering from focal epilepsy and with minimum 1 year postoperative follow-up were studied prospectively and blinded to the underlying diagnosis. We evaluated the influence of two important factors on sensitivity and specificity of ESI: the number of electrodes (low resolution, LR-ESI: <30 versus high resolution, HR-ESI: 128-256 electrodes), and the use of individual MRI (i-MRI) versus template MRI (t-MRI) as the head model. Findings: ESI had a sensitivity of 85% and a specificity of 87% when HR-ESI with i-MRI was used. Using LR-ESI, sensitivity decreased to 68%, or even 57% when only t-MRI was available. The sensitivity of HR-ESI/i-MRI compared favorably with those of MRI (76%), PET (69%) and ictal/interictal SPECT (64%). Interpretation: This study on a large patient group shows excellent sensitivity and specificity of ESI if 128 EEG channels or more are used for ESI and if the results are coregistered to the patient's individual MRI. Localization precision is as high as or even higher than established brain imagery techniques. HR-ESI appears to be a valuable additional imaging tool, given that larger electrode arrays are easily and rapidly applied with modern EEG equipment and that structural MRI is nearly always available for these patients.
Resumo:
Neuroimaging studies analyzing neurophysiological signals are typically based on comparing averages of peri-stimulus epochs across experimental conditions. This approach can however be problematic in the case of high-level cognitive tasks, where response variability across trials is expected to be high and in cases where subjects cannot be considered part of a group. The main goal of this thesis has been to address this issue by developing a novel approach for analyzing electroencephalography (EEG) responses at the single-trial level. This approach takes advantage of the spatial distribution of the electric field on the scalp (topography) and exploits repetitions across trials for quantifying the degree of discrimination between experimental conditions through a classification scheme. In the first part of this thesis, I developed and validated this new method (Tzovara et al., 2012a,b). Its general applicability was demonstrated with three separate datasets, two in the visual modality and one in the auditory. This development allowed then to target two new lines of research, one in basic and one in clinical neuroscience, which represent the second and third part of this thesis respectively. For the second part of this thesis (Tzovara et al., 2012c), I employed the developed method for assessing the timing of exploratory decision-making. Using single-trial topographic EEG activity during presentation of a choice's payoff, I could predict the subjects' subsequent decisions. This prediction was due to a topographic difference which appeared on average at ~516ms after the presentation of payoff and was subject-specific. These results exploit for the first time the temporal correlates of individual subjects' decisions and additionally show that the underlying neural generators start differentiating their responses already ~880ms before the button press. Finally, in the third part of this project, I focused on a clinical study with the goal of assessing the degree of intact neural functions in comatose patients. Auditory EEG responses were assessed through a classical mismatch negativity paradigm, during the very early phase of coma, which is currently under-investigated. By taking advantage of the decoding method developed in the first part of the thesis, I could quantify the degree of auditory discrimination at the single patient level (Tzovara et al., in press). Our results showed for the first time that even patients who do not survive the coma can discriminate sounds at the neural level, during the first hours after coma onset. Importantly, an improvement in auditory discrimination during the first 48hours of coma was predictive of awakening and survival, with 100% positive predictive value. - L'analyse des signaux électrophysiologiques en neuroimagerie se base typiquement sur la comparaison des réponses neurophysiologiques à différentes conditions expérimentales qui sont moyennées après plusieurs répétitions d'une tâche. Pourtant, cette approche peut être problématique dans le cas des fonctions cognitives de haut niveau, où la variabilité des réponses entre les essais peut être très élevéeou dans le cas où des sujets individuels ne peuvent pas être considérés comme partie d'un groupe. Le but principal de cette thèse est d'investiguer cette problématique en développant une nouvelle approche pour l'analyse des réponses d'électroencephalographie (EEG) au niveau de chaque essai. Cette approche se base sur la modélisation de la distribution du champ électrique sur le crâne (topographie) et profite des répétitions parmi les essais afin de quantifier, à l'aide d'un schéma de classification, le degré de discrimination entre des conditions expérimentales. Dans la première partie de cette thèse, j'ai développé et validé cette nouvelle méthode (Tzovara et al., 2012a,b). Son applicabilité générale a été démontrée avec trois ensembles de données, deux dans le domaine visuel et un dans l'auditif. Ce développement a permis de cibler deux nouvelles lignes de recherche, la première dans le domaine des neurosciences cognitives et l'autre dans le domaine des neurosciences cliniques, représentant respectivement la deuxième et troisième partie de ce projet. En particulier, pour la partie cognitive, j'ai appliqué cette méthode pour évaluer l'information temporelle de la prise des décisions (Tzovara et al., 2012c). En se basant sur l'activité topographique de l'EEG au niveau de chaque essai pendant la présentation de la récompense liée à un choix, on a pu prédire les décisions suivantes des sujets (en termes d'exploration/exploitation). Cette prédiction s'appuie sur une différence topographique qui apparaît en moyenne ~516ms après la présentation de la récompense. Ces résultats exploitent pour la première fois, les corrélés temporels des décisions au niveau de chaque sujet séparément et montrent que les générateurs neuronaux de ces décisions commencent à différentier leurs réponses déjà depuis ~880ms avant que les sujets appuient sur le bouton. Finalement, pour la dernière partie de ce projet, je me suis focalisée sur une étude Clinique afin d'évaluer le degré des fonctions neuronales intactes chez les patients comateux. Des réponses EEG auditives ont été examinées avec un paradigme classique de mismatch negativity, pendant la phase précoce du coma qui est actuellement sous-investiguée. En utilisant la méthode de décodage développée dans la première partie de la thèse, j'ai pu quantifier le degré de discrimination auditive au niveau de chaque patient (Tzovara et al., in press). Nos résultats montrent pour la première fois que même des patients comateux qui ne vont pas survivre peuvent discriminer des sons au niveau neuronal, lors de la phase aigue du coma. De plus, une amélioration dans la discrimination auditive pendant les premières 48heures du coma a été observée seulement chez des patients qui se sont réveillés par la suite (100% de valeur prédictive pour un réveil).
Resumo:
The rapid stopping of specific parts of movements is frequently required in daily life. Yet, whether selective inhibitory control of movements is mediated by a specific neural pathway or by the combination between a global stopping of all ongoing motor activity followed by the re-initiation of task-relevant movements remains unclear. To address this question, we applied time-wise statistical analyses of the topography, global field power and electrical sources of the event-related potentials to the global vs selective inhibition stimuli presented during a Go/NoGo task. Participants (n = 18) had to respond as fast as possible with their two hands to Go stimuli and to withhold the response from the two hands (global inhibition condition, GNG) or from only one hand (selective inhibition condition, SNG) when specific NoGo stimuli were presented. Behaviorally, we replicated previous evidence for slower response times in the SNG than in the Go condition. Electrophysiologically, there were two distinct phases of event-related potentials modulations between the GNG and the SNG conditions. At 110âeuro"150 ms post-stimulus onset, there was a difference in the strength of the electric field without concomitant topographic modulation, indicating the differential engagement of statistically indistinguishable configurations of neural generators for selective and global inhibitory control. At 150âeuro"200 ms, there was topographic modulation, indicating the engagement of distinct brain networks. Source estimations localized these effects within bilateral temporo-parieto-occipital and within parieto-central networks, respectively. Our results suggest that while both types of motor inhibitory control depend on global stopping mechanisms, selective and global inhibition still differ quantitatively at early attention-related processing phases.
Resumo:
Background: EEG is the cornerstone of epilepsy diagnostics and mandatory to determine the underlying epilepsy syndrome (e.g. focal vs idiopathic generalized). However, its potential as imaging tool is still underrecognized. In the present study, we aim to determine the prerequisites of maximal benefit of electric source imaging (ESI) to localize the irritative zone in patients with focal epilepsy. Methods: 150 patients suffering from focal epilepsy and with minimum 1 year post-operative follow-up were studied prospectively by reviewers blinded to the underlying diagnosis and outcome. We evaluated the influence of two important factors on sensitivity and specificity of ESI: the number of electrodes (low resolution, LR-ESI: \30 vs. high resolution, HR-ESI: 128-256 electrodes), and the use of individual MRI (i-MRI) vs. template MRI (t-MRI) as head model.Results: ESI had a sensitivity of 85% and a specificity of 87% when HR-ESI with i-MRI was used. Using LR-ESI, sensitivity decreased to 68%, or even 57% when only t-MRI was available. The sensitivity of HR-ESI/i-MRI compared favorably with those of MRI (76%), PET (69%) and ictal/interictal SPECT (64%).Interpretation: This study on a large patient group shows excellent sensitivity and specificity of ESI if 128 EEG channels or more are used for ESI and if the results are co-registered to the patient's individual MRI. Localization precision is as high as or even higher than established brain imaging techniques, providing excellent costeffectiveness in epilepsy evaluation. HR-ESI appears to be a valuable additional imaging tool, given that larger electrode arrays are easily and rapidly applied with modern EEG equipment and that structural MRI is nearly always available for these patients.
Resumo:
Gel electrophoresis allows one to separate knotted DNA (nicked circular) of equal length according to the knot type. At low electric fields, complex knots, being more compact, drift faster than simpler knots. Recent experiments have shown that the drift velocity dependence on the knot type is inverted when changing from low to high electric fields. We present a computer simulation on a lattice of a closed, knotted, charged DNA chain drifting in an external electric field in a topologically restricted medium. Using a Monte Carlo algorithm, the dependence of the electrophoretic migration of the DNA molecules on the knot type and on the electric field intensity is investigated. The results are in qualitative and quantitative agreement with electrophoretic experiments done under conditions of low and high electric fields.
Resumo:
Action representations can interact with object recognition processes. For example, so-called mirror neurons respond both when performing an action and when seeing or hearing such actions. Investigations of auditory object processing have largely focused on categorical discrimination, which begins within the initial 100 ms post-stimulus onset and subsequently engages distinct cortical networks. Whether action representations themselves contribute to auditory object recognition and the precise kinds of actions recruiting the auditory-visual mirror neuron system remain poorly understood. We applied electrical neuroimaging analyses to auditory evoked potentials (AEPs) in response to sounds of man-made objects that were further subdivided between sounds conveying a socio-functional context and typically cuing a responsive action by the listener (e.g. a ringing telephone) and those that are not linked to such a context and do not typically elicit responsive actions (e.g. notes on a piano). This distinction was validated psychophysically by a separate cohort of listeners. Beginning approximately 300 ms, responses to such context-related sounds significantly differed from context-free sounds both in the strength and topography of the electric field. This latency is >200 ms subsequent to general categorical discrimination. Additionally, such topographic differences indicate that sounds of different action sub-types engage distinct configurations of intracranial generators. Statistical analysis of source estimations identified differential activity within premotor and inferior (pre)frontal regions (Brodmann's areas (BA) 6, BA8, and BA45/46/47) in response to sounds of actions typically cuing a responsive action. We discuss our results in terms of a spatio-temporal model of auditory object processing and the interplay between semantic and action representations.
Resumo:
Sleep spindles are approximately 1 s bursts of 10-16 Hz activity that occur during stage 2 sleep. Spindles are highly synchronous across the cortex and thalamus in animals, and across the scalp in humans, implying correspondingly widespread and synchronized cortical generators. However, prior studies have noted occasional dissociations of the magnetoencephalogram (MEG) from the EEG during spindles, although detailed studies of this phenomenon have been lacking. We systematically compared high-density MEG and EEG recordings during naturally occurring spindles in healthy humans. As expected, EEG was highly coherent across the scalp, with consistent topography across spindles. In contrast, the simultaneously recorded MEG was not synchronous, but varied strongly in amplitude and phase across locations and spindles. Overall, average coherence between pairs of EEG sensors was approximately 0.7, whereas MEG coherence was approximately 0.3 during spindles. Whereas 2 principle components explained approximately 50% of EEG spindle variance, >15 were required for MEG. Each PCA component for MEG typically involved several widely distributed locations, which were relatively coherent with each other. These results show that, in contrast to current models based on animal experiments, multiple asynchronous neural generators are active during normal human sleep spindles and are visible to MEG. It is possible that these multiple sources may overlap sufficiently in different EEG sensors to appear synchronous. Alternatively, EEG recordings may reflect diffusely distributed synchronous generators that are less visible to MEG. An intriguing possibility is that MEG preferentially records from the focal core thalamocortical system during spindles, and EEG from the distributed matrix system.
Resumo:
GOJANOVIC, B., J. WELKER, K. IGLESIAS, C. DAUCOURT, and G. GREMION. Electric Bicycles as a New Active Transportation Modality to Promote Health. Med. Sci. Sports Exerc., Vol. 43, No. 11, pp. 2204-2210, 2011. Electrically assisted bicycles (EAB) are an emerging transportation modality favored for environmental reasons. Some physical effort is required to activate the supporting engine, making it a potential active commuting option. Purpose: We hypothesized that using an EAB in a hilly city allows sedentary subjects to commute comfortably, while providing a sufficient effort for health-enhancing purposes. Methods: Sedentary subjects performed four different trips at a self-selected pace: walking 1.7 km uphill from the train station to the hospital (WALK), biking 5.1 km from the lower part of town to the hospital with a regular bike (BIKE), or EAB at two different power assistance settings (EAB(high), EAB(std)). HR, oxygen consumption, and need to shower were recorded. Results: Eighteen sedentary subjects (12 female, 6 male) age 36 +/- 10 yr were included, with (V) over dotO(2max) of 39.4 +/- 5.4 mL.min(-1).kg(-1). Time to complete the course was 22 (WALK), 19 (EAB(high)), 21 (EAB(std)), and 30 (BIKE) min. Mean %(V) over dotO(2max) was 59.0%, 54.9%, 65.7%, and 72.8%. Mean%HR(max) was 71.5%, 74.5%, 80.3%, and 84.0%. There was no significant difference between WALK and EAB(high), but all other comparisons were different (P < 0.05). Two subjects needed to shower after EAB(high), 3 needed to shower after WALK, 8 needed to shower after EAB(std), and all 18 needed to shower after BIKE. WALK and EAB(high) elicited 6.5 and 6.1 METs (no difference), whereas it was 7.3 and 8.2 for EAB(std) and BIKE. Conclusions: EAB is a comfortable and ecological transportation modality, helping sedentary people commute to work and meet physical activity guidelines. Subjects appreciated ease of use and mild effort needed to activate the engine support climbing hills, without the need to shower at work. EAB can be promoted in a challenging urban environment to promote physical activity and mitigate pollution issues.