202 resultados para Early Neuron Differentiation
em Université de Lausanne, Switzerland
Resumo:
The mechanical behaviour of ectodermal cells in the area opaca and the supracellular organization of fibronectin in the adjacent extracellular matrix were studied in whole chick blastoderms developing in vitro. The pattern of spontaneous mechanical activity and its modification by immunoglobulins against fibronectin were determined using a real-time image-analysis system. The pattern of fibronectin was studied using immunocytochemical techniques. It was found that the ectodermal cells in the area opaca actively develop a radially oriented contraction, which leads to a distension of the area pellucida from which the embryo develops. Abnormally increased tension resulted in perturbations of gastrulation and neurulation. An optimized mechanical equilibrium within the blastoderm seems to be necessary for normal development. Anti-fibronectin antibodies applied to the basal side of the blastoderm led rapidly and reversibly to an increase of tension in the contracted cells. This observation indicates that modifications of the extracellular matrix can be transmitted to cytoskeletal elements within adjacent cells. The extracellular matrix of the area opaca contains fibronectin arranged in radially oriented fibrils. This orientation corresponds to the direction of migration of the mesodermal cells. Interestingly, the radial pattern of fibronectin is found in the regions where the ectodermal cells are contracted and develop radially oriented forces. This observation suggests that the supracellular assembly of the extracellular materials could be influenced by the mechanical activity of adjacent cells. Possible modulations of the supracellular organization of extracellular matrix by other factors, e.g. diffusible metabolites, is also discussed. The presence of characteristically organized extracellular matrix components, of spatially differentiated cell activities and of reciprocal interactions between them makes the young chick blastoderm an excellent system for physiological studies of the coordinated cellular activities that lead to changes in form, complexity and function.
Resumo:
Mantle cell lymphoma is a mature lymphoid neoplasm characterized by the t(11;14)(q13;q32) and cyclin D1 overexpression. SOX11 is a transcription factor commonly overexpressed in these tumors but absent in most other mature B-cell lymphomas whose function is not well understood. Experimental studies have shown that silencing of SOX11 in mantle cell lymphoma cells promotes the shift from a mature B cell into an early plasmacytic differentiation phenotype, suggesting that SOX11 may contribute to tumor development by blocking the B-cell differentiation program. The relationship between SOX11 expression and terminal B-cell differentiation in primary mantle cell lymphoma and its relationship to the plasmacytic differentiation observed in occasional cases is not known. In this study we have investigated the terminal B-cell differentiation phenotype in 60 mantle cell lymphomas, 41 SOX11-positive and 19 SOX11-negative. Monotypic plasma cells and lymphoid cells with plasmacytic differentiation expressing cyclin D1 were observed in 7 (37%) SOX11-negative but in none of 41 SOX11-positive mantle cell lymphomas (P<0.001). Intense cytoplasmic expression of a restricted immunoglobulin light chain was significantly more frequent in SOX11-negative than -positive tumors (58 vs 13%) (P=0.001). Similarly, BLIMP1 and XBP1 expression was also significantly more frequent in SOX11-negative than in -positive cases (83 vs 34% and 75 vs 11%, respectively) (P=0.001). However, no differences in the expression of IRF4/MUM1 were observed among these subtypes of mantle cell lymphoma. In conclusion, these results indicate that SOX11-negative mantle cell lymphoma may be a particular subtype of this tumor characterized by more frequent morphological and immunophenotypic terminal B-cell differentiation features that may be facilitated by the absence of SOX11 transcription factor.
Resumo:
ABSTRACT : The development of the retina is a very complex process, occurring through the progressive restriction of cell fates, from pluripotent cell populations to complex tissues and organs. In all vertebrate species analyzed so far, retinal differentiation starts with the generation of retinal ganglion cells (RGC)s. One of the documented key essential events in the specification of RGCs is the expression of ATHS, an atonal homolog encoding a bHLH transcription factor. Despite the putative role of master regulator of RGC differentiation, the mechanism of integrating its functions into a coherent program underlying the production of this subclass of retinal neurons has not yet been elucidated. By using chromatin immunoprecipitation combined with microarray (ChIP-on-chip) we have screened for ATH5 direct targets in the developing chick retina at two consecutive periods: E3.5 (stage HH22) and E6 (stage HH30), covering the stages of progenitor proliferation, neuroepithelium patterning, RGC specification, cell cycle exit and early neuronal differentiation. In parallel, complementary analysis with Affymetrix expression microarrays was conducted. We compared RGCs versus retina to see if the targets correspond to genes preferentially expressed in RGCs. We also precociously overexpressed ATH5 in the retina of individual embryo, and contralateral retina vas used as a control. Our integrated approach allowed us to establish a compendium of ATH5-targets and enabled us to position ATH5 in the transcription network underlying neurogenesis in the retina. Malattia Leventinese (ML) is an autosomal, dominant retinal dystrophy characterized by extracellular, amorphous deposits known as drusen, between the retinal pigment epithelium (RPE) and Bruch's membrane. On the genetic level, it has been associated with a single missense mutation (R345W) in a widely expressed gene with unknown function called EFEMP1. We determined expression patterns of the EFEMP1 gene in normal and ML human retinas. Our data shown that the upregulation of EFEMP1 is not specific to ML eye, except for the region of the ciliary body. We also analyzed the cell compartmentalization of different versions of the protein (both wild type and mutant). Our studies indicate that both abnormal expression of the EFEMP1 gene and mutation and accumulation of EFEMP 1 protein (inside or outside the cells) might contribute to the ML pathology. Résumé : 1er partie : L'ontogenèse de la rétine est un processus complexe au cours duquel des cellules progénitrices sont engagée, par vagues successives, dans des lignées où elles vont d'abord être déterminées puis vont se différencier pour finalement construire un tissu rétinien composé de cinq classes de neurones (les photorécepteurs, les cellules horizontales, bipolaires, amacrines et ganglionnaires) et d'une seule de cellules gliales (les cellules de Muller). Chez tous les vertébrés, la neurogenèse rétinienne est d'abord marquée par la production des cellules ganglionnaires (RGCs). La production de cette classe de neurone est liée à l'expression du gène ATH5 qui est un homologue du gène atonal chez la Drosophile et qui code pour un facteur de transcription de la famille des protéines basic Helix-Loop-Helix (bHLH). Malgré le rôle central que joue ATH5 dans la production des RGCs, le mécanisme qui intègre la fonction de cette protéine dans le programme de détermination neuronale et ceci en relation avec le développement de la rétine n'est pas encore élucidé. Grâce à une technologie qui permet de combiner la sélection de fragments de chromatine liant ATH5 et la recherche de séquences grâce à des puces d'ADN non-codants (ChIP-on-chip), nous avons recherché des cibles potentielles de la protéine ATH5 dans la rétine en développement. Nous avons conduit cette recherche à deux stades de développement de manière à englober la phase de prolifération cellulaire, la détermination des RGCs, la sortie du cycle cellulaire ainsi que les premières étapes de la différentiation de ces neurones. Des expériences complémentaires nous ont permis de définir les patrons d'expression des gènes sélectionnés ainsi que l'activité promotrice des éléments de régulation identifiés lors de notre criblage. Ces approches expérimentales diverses et complémentaires nous ont permis de répertorier des gènes cibles de la protéine ATH5 et d'établir ainsi des liens fonctionnels entre des voies métaboliques dont nous ne soupçonnions pas jusqu'alors qu'elles puissent être associées à la production d'une classe de neurones centraux. 2ème partie : Malattia Leventinese (ML) est une maladie génétique qui engendre une dystrophie de la rétine. Elle se caractérise par l'accumulation de dépôt amorphe entre l'épithélium pigmentaire et la membrane de Bruch et connu sous le nom de drusen. Cette maladie est liée à une simple mutation non-sens (R345W) dans un gène dénommé EFEMP1 qui est exprimé dans de nombreux tissus mais dont la fonction reste mal définie. Une étude détaillée de l'expression de ce gène dans des rétines humaines a révélé une expression à un niveau élevé du gène EFEMP1 dans divers tissus de l'oeil ML mais également dans des yeux contrôles. Alors que l'accumulation d'ARN messager EFEMP1 dans les cellules de l'épithélium pigmentaire n'est pas spécifique à ML, l'expression de ce gène dans le corps cilié n'a été observée que dans l'oeil ML. Nous avons également comparé la sécrétion de la protéine sauvage avec celle porteuse de la mutation. En résumé, notre étude révèle que le niveau élevé d'expression du gène EFEMP1 ainsi que l'accumulation de la protéine dans certains compartiments cellulaires pourraient contribuer au développement de pathologies rétiniennes liées à ML.
Resumo:
Very little is known about early molecular events triggering epithelial cell differentiation. We have examined the possible role of tyrosine phosphorylation in this process, as observed in cultures of primary mouse keratinocytes after exposure to calcium or 12-O-tetradecanoylphorbol-13-acetate (TPA). Immunoblotting with phosphotyrosine-specific antibodies as well as direct phosphoamino acid analysis revealed that induction of tyrosine phosphorylation occurs as a very early and specific event in keratinocyte differentiation. Very little or no induction of tyrosine phosphorylation was observed in a keratinocyte cell line resistant to the differentiating effects of calcium. Treatment of cells with tyrosine kinase inhibitors prevented induction of tyrosine phosphorylation by calcium and TPA and interfered with the differentiative effects of these agents. These results suggest that specific activation of tyrosine kinase(s) may play an important regulatory role in keratinocyte differentiation.
Resumo:
A population of undifferentiated cells with neuronal potentialities were revealed in rat sciatic nerve. Explant cultures of sciatic nerve were prepared from newborn or early postnatal rat. Cultures were growth in F14 medium supplemented with 10% of fetal calf serum, incubated in a humidified 3% CO2, 97% air atmosphere. Within 2 weeks, refractile cells exhibiting the morphology of neurons were observed in all examined cultures. These cells had ovoid or multipolar refractile cells bodies with extended cytoplasmic processes. The neuronal nature of these cells was confirmed by their immunostaining with specific neuronal markers: neurofilament triplets, neuron-specific enolase, peripherin, microtubule-associated proteins, and brain spectrin. This neuronal population displayed various phenotypes. The CO2 concentration in the incubator plays an important role, since the number of differentiated neurons was lower in cultures incubated in 5% CO2. Since the sciatic nerve is devoid of nerve cell bodies in vivo, we concluded that early postnatal sciatic nerve contains crest cells with neuronal potentialities differentiating into neurons in response to the culture's environmental cues.
Resumo:
Xenobiotic exposure is a risk factor in the etiology of neurodegenerative disease. It was recently hypothesized that restricted exposure during brain development could predispose for a neurodegenerative disease later in life. As neuroinflammation contributes to progressive neurodegeneration, it is suspected that neurodevelopmental xenobiotic exposure could elicit a neuroinflammatory process, which over time may assume a detrimental character. We investigated the neurotoxic effects of paraquat (PQ) in three-dimensional whole rat brain cell cultures, exposed during an early differentiation stage, comparing immediate effects-directly post exposure-with long-term effects, 20 days after interrupted PQ-administration. Adverse effects and neuroinflammatory responses were assessed by measuring changes in gene- and protein-expression as well as by determining cell morphology changes. Differentiating neural cultures were highly susceptible to PQ and showed neuronal damage and strong astrogliosis. After the 20-day washout period, neurons partially recovered, whereas astrogliosis persisted, and was accompanied by microglial activation of a neurodegenerative phenotype. Our data shows that immediate and long-term effects of subchronic PQ-exposure differ. Also, PQ-exposure during this window of extensive neuronal differentiation led to a delayed microglial activation, of a character that could promote further pro-inflammatory signals that enable prolonged inflammation, thereby fueling further neurodegeneration.
Resumo:
The mechanisms that guide progenitor cell fate and differentiation in the vertebrate central nervous system (CNS) are poorly understood. Gain-of-function experiments suggest that Notch signaling is involved in the early stages of mammalian neurogenesis. On the basis of the expression of Notch1 by putative progenitor cells of the vertebrate CNS, we have addressed directly the role of Notch1 in the development of the mammalian brain. Using conditional gene ablation, we show that loss of Notch1 results in premature onset of neurogenesis by neuroepithelial cells of the midbrain-hindbrain region of the neural tube. Notch1-deficient cells do not complete differentiation but are eliminated by apoptosis, resulting in a reduced number of neurons in the adult cerebellum. We have also analyzed the effects of Notch1 ablation on gliogenesis in vivo. Our results show that Notch1 is required for both neuron and glia formation and modulates the onset of neurogenesis within the cerebellar neuroepithelium.
Resumo:
RORα is a retinoid-related orphan nuclear receptor that regulates inflammation, lipid metabolism, and cellular differentiation of several non-epithelial tissues. In spite of its high expression in skin epithelium, its functions in this tissue remain unclear. Using gain- and loss-of-function approaches to alter RORα gene expression in human keratinocytes (HKCs), we have found that this transcription factor functions as a regulator of epidermal differentiation. Among the 4 RORα isoforms, RORα4 is prominently expressed by keratinocytes in a manner that increases with differentiation. In contrast, RORα levels are significantly lower in skin squamous cell carcinoma tumors (SCCs) and cell lines. Increasing the levels of RORα4 in HKCs enhanced the expression of structural proteins associated with early and late differentiation, as well as genes involved in lipid barrier formation. Gene silencing of RORα impaired the ability of keratinocytes to differentiate in an in vivo epidermal cyst model. The pro-differentiation function of RORα is mediated at least in part by FOXN1, a well-known pro-differentiation transcription factor that we establish as a novel direct target of RORα in keratinocytes. Our results point to RORα as a novel node in the keratinocyte differentiation network and further suggest that the identification of RORα ligands may prove useful for treating skin disorders that are associated with abnormal keratinocyte differentiation, including cancer.
Resumo:
The scaffold protein Islet-Brain1/c-Jun amino-terminal kinase Interacting Protein-1 (IB1/JIP-1) is a modulator of the c-Jun N-terminal kinase (JNK) activity, which has been implicated in pleiotrophic cellular functions including cell differentiation, division, and death. In this study, we described the presence of IB1/JIP-1 in epithelium of the rat prostate as well as in the human prostatic LNCaP cells. We investigated the functional role of IB1/JIP-1 in LNCaP cells exposed to the proapoptotic agent N-(4-hydroxyphenyl)retinamide (4-HPR) which induced a reduction of IB1/JIP-1 content and a concomittant increase in JNK activity. Conversely, IB1/JIP-1 overexpression using a viral gene transfer prevented the JNK activation and the 4-HPR-induced apoptosis was blunted. In prostatic adenocarcinoma cells, the neuroendocrine (NE) phenotype acquisition is associated with tumor progression and androgen independence. During NE transdifferentiation of LNCaP cells, IB1/JIP-1 levels were increased. This regulated expression of IB1/JIP-1 is secondary to a loss of the neuronal transcriptional repressor neuron restrictive silencing factor (NRSF/REST) function which is known to repress IB1/JIP-1. Together, these results indicated that IB1/JIP-1 participates to the neuronal phenotype of the human LNCaP cells and is a regulator of JNK signaling pathway.
Resumo:
B cells are the primary targets of infection for mouse mammary tumor virus (MMTV). However, for productive retroviral infection, T cell stimulation through the virally-encoded superantigen (SAG) is necessary. It activates B cells and leads to cell division and differentiation. To characterize the role of B cell differentiation for the MMTV life cycle, we studied the course of infection in transgenic mice deficient for CD28/CTLA4-B7 interactions (mCTLA4-H gamma 1 transgenic mice). B cell infection occurred in CTLA4-H gamma 1 transgenic mice as integrated proviral DNA could be detected in draining lymph node cells early after infection by polymerase chain reaction analysis. In mice expressing I-E, B cells were able to present the viral SAG efficiently to V beta 6+ T cells. These cells expanded specifically and were triggered to express the activation marker CD69. Further stages of progression of infection appeared to be defective. Kinetics experiments indicated that T and B cell stimulation stopped more rapidly than in control mice. B cells acquired an activated CD69+ phenotype, were induced to produce IgM but only partially switched to IgG secretion. Finally, the dissemination of infected cells to other lymph nodes and spleen was reduced and the peripheral deletion of V beta 6+ T cells was minimal. In contrast, in mice lacking I-E, T cell stimulation was also impaired and B cell activation undetectable. These data implicate B7-dependent cellular interactions for superantigenic T cell stimulation by low-affinity TCR ligands and suggest a role of B cell differentiation in viral dissemination and peripheral T cell deletion.
Resumo:
Several groups have demonstrated the existence of self-renewing stem cells in embryonic and adult mouse brain. In vitro, these cells proliferate in response to epidermal growth factor, forming clusters of nestin-positive cells that may be dissociated and subcultured repetitively. Here we show that, in stem cell clusters derived from rat embryonic striatum, cell proliferation decreased with increasing number of passages and in response to elevated concentrations of potassium (30 mM KCl). In monolayer culture, the appearance of microtubule-associated protein type-5-immunoreactive (MAP-5(+)) cells (presumptive neurons) in response to basic fibroblast growth factor (bFGF) was reduced at low cell density and with increasing number of passages. In the presence of bFGF, elevated potassium caused a more differentiated neuronal phenotype, characterized by an increased proportion of MAP-5(+) cells, extensive neuritic branching, and higher specific activity of glutamic acid decarboxylase. Dissociated stem cells were able to invade cultured brain cell aggregates containing different proportions of neurons and glial cells, whereas they required the presence of a considerable proportion of glial cells in the host cultures to become neurofilament H-positive. The latter observation supports the view that astrocyte-derived factors influence early differentiation of the neuronal cell lineage.
Resumo:
The insulin-producing β cells of pancreatic islets are coupled by connexin36 (Cx36) channels. To investigate what controls the expression of this connexin, we have investigated its pattern during mouse pancreas development, and the influence of three transcription factors that are critical for β-cell development and differentiation. We show that (1) the Cx36 gene (Gjd2) is activated early in pancreas development and is markedly induced at the time of the surge of the transcription factors that determine β-cell differentiation; (2) the cognate protein is detected about a week later and is selectively expressed by β cells throughout the prenatal development of mouse pancreas; (3) a 2-kbp fragment of the Gjd2 promoter, which contains three E boxes for the binding of the bHLH factor Beta2/NeuroD1, ensures the expression of Cx36 by β cells; and (4) Beta2/NeuroD1 binds to these E boxes and, in the presence of the E47 ubiquitous cofactor, transactivates the Gjd2 promoter. The data identify Cx36 as a novel early marker of β cells and as a target of Beta2/NeuroD1, which is essential for β-cell development and differentiation.
Resumo:
P>The first Variscan pseudo-adakites were identified in close association with the Saint-Jean-du-Doigt (SJDD) mafic intrusion (Brittany, France) in a geodynamic context unrelated to subduction. These rocks are trondhjemites emplaced 347 +/- 4 Ma ago as 2-3 km2 bodies and dykes. Trace-element concentrations and Sr-Nd-Pb isotope ratios indicate that the SJDD pseudo-adakites probably resulted from extreme differentiation of an SJDD-type hydrous basaltic magma in a lower continental crust of normal thickness (0.8 GPa). Modelling shows that garnet is not a required phase, which was commonly believed to be the case for continental arc-derived adakite-like rocks. A massive fractionation of amphibole fits the data much better and does not require high pressures, in agreement with the inferred extensional tectonic regime at the time of pluton emplacement. Alternatively, the SJDD pseudo-adakites could have resulted from the melting of newly underplated SJDD mafic precursors, but thermal considerations lead us to believe that this was not the case.
Resumo:
Cytotoxic CD8 T cells exert their antiviral and antitumor activity primarily through the secretion of cytotoxic granules. Degranulation activity and cytotoxic granules (perforin plus granzymes) generally define CD8 T cells with cytotoxic function. In this study, we have investigated the expression of granzyme K (GrmK) in comparison to that of GrmA, GrmB, and perforin. The expression of the cytotoxic granules was assessed in virus-specific CD8 T cells specific to influenza virus, Epstein-Barr virus (EBV), cytomegalovirus (CMV), or human immunodeficiency virus type 1 (HIV-1). We observed a dichotomy between GrmK and perforin expression in virus-specific CD8 T cells. The profile in influenza virus-specific CD8 T cells was perforin(-) GrmB(-) GrmA(+/-) GrmK(+); in CMV-specific cells, it was perforin(+) GrmB(+) GrmA(+) GrmK(-/+); and in EBV- and HIV-1-specific cells, it was perforin(-/+) GrmB(+) GrmA(+) GrmK(+). On the basis of the delineation of memory and effector CD8 T cells with CD45RA and CD127, the GrmK(+) profile was associated with early-stage memory CD8 T-cell differentiation, the perforin(+) GrmB(+) GrmA(+) profile with advanced-stage differentiation, and the GrmB(+) GrmA(+) Grmk(+) profile with intermediate-stage differentiation. Furthermore, perforin and GrmB but not GrmA and GrmK correlated with cytotoxic activity. Finally, changes in antigen exposure in vitro and in vivo during primary HIV-1 infection and vaccination modulated cytotoxic granule profiles. These results advance our understanding of the relationship between distinct profiles of cytotoxic granules in memory CD8 T cells and function, differentiation stage, and antigen exposure.
Resumo:
We have selectively inhibited Notch1 signaling in oligodendrocyte precursors (OPCs) using the Cre/loxP system in transgenic mice to investigate the role of Notch1 in oligodendrocyte (OL) development and differentiation. Early development of OPCs appeared normal in the spinal cord. However, at embryonic day 17.5, premature OL differentiation was observed and ectopic immature OLs were present in the gray matter. At birth, OL apoptosis was strongly increased in Notch1 mutant animals. Premature OL differentiation was also observed in the cerebrum, indicating that Notch1 is required for the correct spatial and temporal regulation of OL differentiation in various regions of the central nervous system. These findings establish a widespread function of Notch1 in the late steps of mammalian OPC development in vivo.