22 resultados para EXPERIMENTAL CEREBRAL MALARIA
em Université de Lausanne, Switzerland
Resumo:
The outcome of infection depends on multiple layers of immune regulation, with innate immunity playing a decisive role in shaping protection or pathogenic sequelae of acquired immunity. The contribution of pattern recognition receptors and adaptor molecules in immunity to malaria remains poorly understood. Here, we interrogate the role of the caspase recruitment domain-containing protein 9 (CARD9) signaling pathway in the development of experimental cerebral malaria (ECM) using the murine Plasmodium berghei ANKA infection model. CARD9 expression was upregulated in the brains of infected wild-type (WT) mice, suggesting a potential role for this pathway in ECM pathogenesis. However, P. berghei ANKA-infected Card9(-/-) mice succumbed to neurological signs and presented with disrupted blood-brain barriers similar to WT mice. Furthermore, consistent with the immunological features associated with ECM in WT mice, Card9(-/-) mice revealed (i) elevated levels of proinflammatory responses, (ii) high frequencies of activated T cells, and (iii) CD8(+) T cell arrest in the cerebral microvasculature. We conclude that ECM develops independently of the CARD9 signaling pathway.
Resumo:
BACKGROUND: Cerebral ischemia is associated with the activation of glial cells, infiltration of leukocytes and an increase in inflammatory mediators in the ischemic brain and systemic circulation. How this inflammatory response influences lesion size and neurological outcome remains unclear. D-JNKI1, an inhibitor of the c-Jun N-terminal kinase pathway, is strongly neuroprotective in animal models of stroke. Intriguingly, the protection mediated by D-JNKI1 is high even with intravenous administration at very low doses with undetectable drug levels in the brain, pointing to a systemic mode of action, perhaps on inflammation. FINDINGS: We evaluated whether D-JNKI1, administered intravenously 3 h after the onset of middle cerebral artery occlusion (MCAO), modulates secretion of the inflammatory mediators interleukin-6 and keratinocyte-derived chemokine in the plasma and from the spleen and brain at several time points after MCAO. We found an early release of both mediators in the systemic circulation followed by an increase in the brain and went on to show a later systemic increase in vehicle-treated mice. Release of interleukin-6 and keratinocyte-derived chemokine from the spleen of mice with MCAO was not significantly different from sham mice. Interestingly, the secretion of these inflammatory mediators was not altered in the systemic circulation or brain after successful neuroprotection with D-JNKI1. CONCLUSIONS: We demonstrate that neuroprotection with D-JNKI1 after experimental cerebral ischemia is independent of systemic and brain release of interleukin-6 and keratinocyte-derived chemokine. Furthermore, our findings suggest that the early systemic release of interleukin-6 and keratinocyte-derived chemokine may not necessarily predict an unfavorable outcome in this model.
Resumo:
Depuis la Décennie du cerveau, proclamée en 1990 aux Etats-Unis et en 1993 en Suisse, les neurosciences semblent avoir lié solidement la psychiatrie à la médecine somatique et aux sciences de la vie, notamment à travers la neuroimagerie fonctionnelle (TEP, IRMf, EEG). Ces différentes techniques permettent d'enregistrer l'activité cérébrale humaine in vivo au cours de certaines tâches cognitives et de la corréler à des diagnostics, des symptômes ou des traits psychologiques. Elles promettent le développement d'une recherche enfin interdisciplinaire et translationnelle, qui vise l'application de la recherche fondamentale neuroscientifique à la clinique psychiatrique afin de résoudre la question des causes neurobiologiques des maladies mentales. Ce travail propose une autre histoire des techniques de neuroimagerie en psychiatrie, sur plus d'un siècle, en se basant sur des entretiens, des observations in situ et des sources historiques peu connues appartenant entre autres au passé de la psychiatrie académique suisse. Cette thèse montre de quelle manière la neuroimagerie fonctionnelle contribue à la formation de versions cliniques et expérimentales d'un sujet cérébral à l'intersection de la psychopathologie, de la psychopharmacologie et de la neuropsychologie cognitive.¦-¦Since the Decade of the brain, which was proclaimed in the USA in 1990 and in Switzerland in 1993, psychiatry appeared to get closer to somatic medicine and neurosciences, mainly thanks to functional neuroimaging (PET, fMRI, EEG). These techniques record in vivo human brain activity during cognitive tasks and correlate patterns of activity with psychiatric disorders, symptoms or psychological dimensions. They promise the development of interdisciplinary and translational research in biomedicine, resulting in the application of fundamental research to clinical psychiatry. The aim is to solve the etiology of mental disorders. This dissertation proposes another story of these techniques as used in psychiatry, starting more than a century ago. Relying on interviews, in situ observations and unexploited historical sources belonging mainly to swiss academic psychiatry past, this study shows how functional neuroimaging has contributed to versions of clinical and experimental cerebral subject at the crossroads between psychopathology, psychopharmacology, and cognitive neuropsychology.
Resumo:
Characteristic symptoms of malaria include recurrent fever attacks and neurodegeneration, signs that are also found in patients with a hyperactive Nalp3 inflammasome. Plasmodium species produce a pigment called hemozoin that is generated by detoxification of heme after hemoglobin degradation in infected red blood cells. We will present data showing that hemoroin acts as a proinflammatory danger signal through activation of the Nalp3 inflammasome, causing the release of IL-1β. Similar to other Nalp3-activating particles, hemozoin activity is blocked by inhibitors of phagocytosis, K+ efflux and NADPH oxidase. In vivo, injection of hemozoin results in acute peritonitis, which is impaired in Nalp3- and IL-1R-deficient mice. Moreover, the pathogenesis of cerebral malaria is reduced in caspase-1-deficient mice infected with Plasmodium berghei sporozoites, while parasitemia remains unchanged. Thus, Plasmodium-generated hemozoin may act as a danger signal resulting in an uncontrolled proinflammatory host response and thereby contributing to the cerebral manifestations seen in malaria.
Resumo:
The electroencephalogram (EEG), invented by the German psychiatrist Hans Berger in 1924, reached the neurophysiological laboratories and several clinical contexts in the mid-30s. In Switzerland, some skeptical physiologists and enthusiastic psychiatrists paved the way for its integration, but it was only after the Second World War that an emerging field of epileptology became part of a process of technological and epistemological innovation which raised great expectations and produced a large body of research at the crossroads of physiology, neurology and psychiatry. An informal network was created, characterized by clinical, scientific and local institutional cultures. The EEG also made it possible to detect some clinical entities, not however without transforming them, as in the case of epilepsy. Some attempts to probe psychiatric diseases and subjects with the EEG are described as negotiated relationships between clinical observations, subjective manifestations or symptoms and inscriptions of a spontaneous or elicited electrical brain activity. These attempts shape a clinical and experimental cerebral subject, which is analyzed in this article from the point of view of its technical aspects and the concrete procedures on which it depends.
Resumo:
BACKGROUND: Characteristic symptoms of malaria include recurrent fever attacks and neurodegeneration, signs that are also found in patients with a hyperactive Nalp3 inflammasome. Plasmodium species produce a crystal called hemozoin that is generated by detoxification of heme after hemoglobin degradation in infected red blood cells. Thus, we hypothesized that hemozoin could activate the Nalp3 inflammasome, due to its particulate nature reminiscent of other inflammasome-activating agents. METHODOLOGY/PRINCIPAL FINDINGS: We found that hemozoin acts as a proinflammatory danger signal that activates the Nalp3 inflammasome, causing the release of IL-1beta. Similar to other Nalp3-activating particles, hemozoin activity is blocked by inhibiting phagocytosis, K(+) efflux and NADPH oxidase. In vivo, intraperitoneal injection of hemozoin results in acute peritonitis, which is impaired in Nalp3-, caspase-1- and IL-1R-deficient mice. Likewise, the pathogenesis of cerebral malaria is dampened in Nalp3-deficient mice infected with Plasmodium berghei sporozoites, while parasitemia remains unchanged. SIGNIFICANCE/CONCLUSIONS: The potent pro-inflammatory effect of hemozoin through inflammasome activation may possibly be implicated in plasmodium-associated pathologies such as cerebral malaria.
Resumo:
Macrophage migration inhibitory factor (MIF) has recently been implicated in the pathogenesis of malarial anaemia. However, field studies have reported contradictory results on circulating MIF concentrations in patients with clinically overt Plasmodium falciparum malaria. We determined plasma MIF levels over time in 10 healthy volunteers during experimental P. falciparum infection. Under fully controlled conditions, MIF levels decreased significantly during early blood-stage infection and reached a nadir at day 8 post-infection. A decrease in the number of circulating lymphocytes, which are an important source of MIF production, paralleled the decrease in MIF levels. Monocyte/macrophage counts remained unchanged. At MIF nadir, the anti-inflammatory cytokine interleukin (IL)-10, which is an inhibitor of T-cell MIF production, was detectable in only 2 of 10 volunteers. Plasma concentrations of the pro-inflammatory cytokines IL-8 and IL-1beta were only marginally elevated. We conclude that circulating MIF levels decrease early in blood-stage malaria as a result of the decline in circulating lymphocytes.
Resumo:
Finding out whether Plasmodium spp. are coevolving with their vertebrate hosts is of both theoretical and applied interest and can influence our understanding of the effects and dynamics of malaria infection. In this study, we tested for local adaptation as a signature of coevolution between malaria blood parasites, Plasmodium spp. and its host, the great tit, Parus major. We conducted a reciprocal transplant experiment of birds in the field, where we exposed birds from two populations to Plasmodium parasites. This experimental set-up also provided a unique opportunity to study the natural history of malaria infection in the wild and to assess the effects of primary malaria infection on juvenile birds. We present three main findings: i) there was no support for local adaptation; ii) there was a male-biased infection rate; iii) infection occurred towards the end of the summer and differed between sites. There were also site-specific effects of malaria infection on the hosts. Taken together, we present one of the few experimental studies of parasite-host local adaptation in a natural malaria system, and our results shed light on the effects of avian malaria infection in the wild.
Resumo:
RESUMESuite à un accident vasculaire cérébral (AVC) ischémique, les cellules gliales ducerveau deviennent activées, de nombreuses cellules inflammatoires pénètrent dans letissu lésé et sécrètent une grande variété de cytokines et chémokines. Aujourd'hui, ilexiste des interrogations sur les effets bénéfiques ou délétères de cette inflammation surla taille de la lésion et le pronostic neurologique.Ce projet vise à évaluer l'effet d'un peptide neuroprotecteur, D-JNKI1, inhibiteur de lavoie pro-apoptotique de signalisation intracellulaire c-Jun N-terminal kinase (JNK), surl'inflammation post-ischémique.Nous montrons d'abord que la microglie est largement activée dans toute la région lésée48 h après l'induction d'une ischémie chez la souris. Cependant, malgré l'inhibition dela mort neuronale par D-JNKI1 évaluée à 48 h, nous n'observons de modification ni del'activation de la microglie, ni de son nombre. Ensuite, nous montrons que le cerveaupeut être protégé même s'il y a une augmentation massive de la sécrétion de médiateursinflammatoires dans la circulation systémique très tôt après induction d'un AVCischémique. De plus, nous notons que la sécrétion de molécules inflammatoires dans lecerveau n'est pas différente entre les animaux traités par D-JNKI1 ou une solutionsaline, bien que nous ayons obtenu une neuroprotection significative chez les animauxtraités.En conclusion, nous montrons que l'inhibition de la voie de JNK par D-JNKI1n'influence pas directement l'inflammation post-ischémique. Ceci suggère quel'inhibition de l'inflammation n'est pas forcément nécessaire pour obtenir en hautdegré de neuroprotection du parenchyme lésé après ischémie cérébrale, et que lesmécanismes inflammatoires déclenchés lors d'une ischémie cérébrale ne sont pasforcément délétères pour la récupération du tissu endommagé.SUMMARYAfter cerebral ischemia, glial cells become activated and numerous inflammatory cellsinfiltrate the site of the lesion, secreting a large variety of cytokines and chemokines. Itis controversial whether this brain inflammation is detrimental or beneficial and how itinfluences lesion size and neurological outcome.This project was aimed at critically evaluating whether the neuroprotective peptide DJNKI,an inhibitor of the pro-apopotic c-Jun N-terminal kinase (JNK) pathway,modulates post-ischemic inflammation in animal models of stroke. Specifically, it wasasked whether JNK inhibition prevents microglial activation and the release ofinflammatory mediators.In the first part of this study, we showed that microglia was activated throughout thelesion 48 h after experimental stroke. However, the activation and accumulation ofmicroglia was not reduced by D-JNKI1, despite a significant reduction of the lesionsize. In the second part of this project, we demonstrated that neuroprotection measuredat 48 h occurs even though inflammatory mediators are released in the plasma veryearly after the onset of cerebral ischemia. Furthermore, we found that secretion ofinflammatory mediators in the brain was not different in groups treated with D-JNKI1or not, despite a significant reduction of the lesion size in the treated group.Altogether, we show that inhibition of the JNK pathway using D-JNKI1 does notinfluence directly post-stroke inflammation. Inhibition of inflammation is therefore notnecessarily required for neuroprotection after cerebral ischemia. Thus, post-strokeinflammation might not be detrimental for the tissue recovery.
Resumo:
STUDY OBJECTIVES: Hemispheric stroke in humans is associated with sleep-wake disturbances and sleep electroencephalogram (EEG) changes. The correlation between these changes and stroke extent remains unclear. In the absence of experimental data, we assessed sleep EEG changes after focal cerebral ischemia of different extensions in mice. DESIGN: Following electrode implantation and baseline sleep-wake EEG recordings, mice were submitted to sham surgery (control group), 30 minutes of intraluminal middle cerebral artery (MCA) occlusion (striatal stroke), or distal MCA electrocoagulation (cortical stroke). One and 12 days after stroke, sleep-wake EEG recordings were repeated. The EEG recorded from the healthy hemisphere was analyzed visually and automatically (fast Fourier analysis) according to established criteria. MEASUREMENTS AND RESULTS: Striatal stroke induced an increase in non-rapid eye movement (NREM) sleep and a reduction of rapid eye movement sleep. These changes were detectable both during the light and the dark phase at day 1 and persisted until day 12 after stroke. Cortical stroke induced a less-marked increase in NREM sleep, which was present only at day 1 and during the dark phase. In cortical stroke, the increase in NREM sleep was associated in the wake EEG power spectra, with an increase in the theta and a reduction in the beta activity. CONCLUSION: Cortical and striatal stroke lead to different sleep-wake EEG changes in mice, which probably reflect variable effects on sleep-promoting and wakefulness-maintaining neuronal networks.
Resumo:
BACKGROUND: The link between host MHC (major histocompatibility complex) genotype and malaria is largely based on correlative data with little or no experimental control of potential confounding factors. We used an experimental mouse model to test for main effects of MHC-haplotypes, MHC heterozygosity, and MHC x parasite clone interactions. We experimentally infected MHC-congenic mice (F2 segregants, homo- and heterozygotes, males and females) with one of two clones of Plasmodium chabaudi and recorded disease progression. RESULTS: We found that MHC haplotype and parasite clone each have a significant influence on the course of the disease, but there was no significant host genotype by parasite genotype interaction. We found no evidence for overdominance nor any other sort of heterozygote advantage or disadvantage. CONCLUSION: When tested under experimental conditions, variation in the MHC can significantly influence the course of malaria. However, MHC heterozygote advantage through overdominance or dominance of resistance cannot be assumed in the case of single-strain infections. Future studies might focus on the interaction between MHC heterozygosity and multiple-clone infections.
Resumo:
We explored the role of urokinase and tissue-type plasminogen activators (uPA and tPA), as well as the uPA receptor (uPAR; CD87) in mouse severe malaria (SM), using genetically deficient (-/-) mice. The mortality resulting from Plasmodium berghei ANKA infection was delayed in uPA(-/-) and uPAR(-/-) mice but was similar to that of the wild type (+/+) in tPA(-/-) mice. Parasitemia levels were similar in uPA(-/-), uPAR(-/-), and +/+ mice. Production of tumor necrosis factor, as judged from the plasma level and the mRNA levels in brain and lung, was markedly increased by infection in both +/+ and uPAR(-/-) mice. Breakdown of the blood-brain barrier, as evidenced by the leakage of Evans Blue, was similar in +/+ and uPAR(-/-) mice. SM was associated with a profound thrombocytopenia, which was attenuated in uPA(-/-) and uPAR(-/-) mice. Administration of aprotinin, a plasmin antagonist, also delayed mortality and attenuated thrombocytopenia. Platelet trapping in cerebral venules or alveolar capillaries was evident in +/+ mice but absent in uPAR(-/-) mice. In contrast, macrophage sequestration in cerebral venules or alveolar capillaries was evident in both +/+ and uPAR(-/-) mice. Polymorphonuclear leukocyte sequestration in alveolar capillaries was similar in +/+ and uPAR(-/-) mice. These results demonstrate that the uPAR deficiency attenuates the severity of SM, probably by its important role in platelet kinetics and trapping. These results therefore suggest that platelet sequestration contributes to the pathogenesis of SM.
Resumo:
Both reproduction and parasite defense can be costly, and an animal may face a trade-off between investing in offspring or in parasite defense. In contrast to the findings from nonexperimental studies that the poorly reproducing individuals are often the ones with high parasite loads, this life-history view predicts that individuals with high reproductive investment will show high parasite prevalence. Here we provide an experimental confirmation of a positive association between parental investment levels of male great tits Parus major and the prevalence of Plasmodium spp, a hematozoa causing malaria in various bird species. We manipulated brood size, measured feeding effort of both males and females, and assessed the prevalence of the hemoparasite from blood smears. In enlarged broods the males, but not the females, showed significantly higher rates of food provisioning to the chicks, and the rate of malarial infection was found to be more than double in male, but not female, parents of enlarged broods. The findings show that there may be a trade-off between reproductive effort and parasite defense of the host and also suggest a mechanism for the well documented trade-off between current reproductive effort and parental survival.
Resumo:
PURPOSE: Experimental evidence suggests that lactate is neuroprotective after acute brain injury; however, data in humans are lacking. We examined whether exogenous lactate supplementation improves cerebral energy metabolism in humans with traumatic brain injury (TBI). METHODS: We prospectively studied 15 consecutive patients with severe TBI monitored with cerebral microdialysis (CMD), brain tissue PO2 (PbtO2), and intracranial pressure (ICP). Intervention consisted of a 3-h intravenous infusion of hypertonic sodium lactate (aiming to increase systemic lactate to ca. 5 mmol/L), administered in the early phase following TBI. We examined the effect of sodium lactate on neurochemistry (CMD lactate, pyruvate, glucose, and glutamate), PbtO2, and ICP. RESULTS: Treatment was started on average 33 ± 16 h after TBI. A mixed-effects multilevel regression model revealed that sodium lactate therapy was associated with a significant increase in CMD concentrations of lactate [coefficient 0.47 mmol/L, 95% confidence interval (CI) 0.31-0.63 mmol/L], pyruvate [13.1 (8.78-17.4) μmol/L], and glucose [0.1 (0.04-0.16) mmol/L; all p < 0.01]. A concomitant reduction of CMD glutamate [-0.95 (-1.94 to 0.06) mmol/L, p = 0.06] and ICP [-0.86 (-1.47 to -0.24) mmHg, p < 0.01] was also observed. CONCLUSIONS: Exogenous supplemental lactate can be utilized aerobically as a preferential energy substrate by the injured human brain, with sparing of cerebral glucose. Increased availability of cerebral extracellular pyruvate and glucose, coupled with a reduction of brain glutamate and ICP, suggests that hypertonic lactate therapy has beneficial cerebral metabolic and hemodynamic effects after TBI.
Resumo:
Hyperammonemic disorders in pediatric patients lead to poorly understood irreversible effects on the developing brain that may be life-threatening. We showed previously that some of these NH4+-induced irreversible effects might be due to impairment of axonal growth that can be protected under ammonium exposure by creatine co-treatment. The aim of the present work was thus to analyse how the genes of arginine:glycine amidinotransferase (AGAT) and guanidinoacetate methyltransferase (GAMT), allowing creatine synthesis, as well as of the creatine transporter SLC6A8, allowing creatine uptake into cells, are regulated in rat brain cells under NH4+ exposure. Reaggregated brain cell three-dimensional cultures exposed to NH4Cl were used as an experimental model of hyperammonemia in the developing central nervous system (CNS). We show here that NH4+ exposure differentially alters AGAT, GAMT and SLC6A8 regulation, in terms of both gene expression and protein activity, in a cell type-specific manner. In particular, we demonstrate that NH4+ exposure decreases both creatine and its synthesis intermediate, guanidinoacetate, in brain cells, probably through the inhibition of AGAT enzymatic activity. Our work also suggests that oligodendrocytes are major actors in the brain in terms of creatine synthesis, trafficking and uptake, which might be affected by hyperammonemia. Finally, we show that NH4+ exposure induces SLC6A8 in astrocytes. This suggests that hyperammonemia increases blood-brain barrier permeability for creatine. This is normally limited due to the absence of SLC6A8 from the astrocyte feet lining microcapillary endothelial cells, and thus creatine supplementation may protect the developing CNS of hyperammonemic patients.