7 resultados para EXERCISE TOLERANCE

em Université de Lausanne, Switzerland


Relevância:

60.00% 60.00%

Publicador:

Resumo:

COPD is associated with some skeletal muscle dysfunction which contributes to a poor exercise tolerance. This dysfunction results from multiple factors: physical inactivity, corticosteroids, smoking, malnutrition, anabolic deficiency, systemic inflammation, hypoxia, oxidative stress. Respiratory rehabilitation is based on exercise training and allows patients with COPD to experience less dyspnoea, and to improve their exercise tolerance and quality of life. Not all patients, however, benefit from rehabilitation. Acknowledging the different factors leading to muscular dysfunction allows one to foresee new avenues to improve efficacy of exercise training in COPD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

T lymphocytes reactive with the product of the Mlsa-allele of the minor lymphocyte stimulating (Mls) locus use a predominant T-cell receptor beta-chain variable gene segment (V beta 6). Such V beta 6-bearing T cells are selectively eliminated in the thymus of Mlsa-bearing mice, consistent with a model in which tolerance to self antigens is achieved by clonal deletion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: The purpose of this study was to develop a mathematical model (sine model, SIN) to describe fat oxidation kinetics as a function of the relative exercise intensity [% of maximal oxygen uptake (%VO2max)] during graded exercise and to determine the exercise intensity (Fatmax) that elicits maximal fat oxidation (MFO) and the intensity at which the fat oxidation becomes negligible (Fatmin). This model included three independent variables (dilatation, symmetry, and translation) that incorporated primary expected modulations of the curve because of training level or body composition. METHODS: Thirty-two healthy volunteers (17 women and 15 men) performed a graded exercise test on a cycle ergometer, with 3-min stages and 20-W increments. Substrate oxidation rates were determined using indirect calorimetry. SIN was compared with measured values (MV) and with other methods currently used [i.e., the RER method (MRER) and third polynomial curves (P3)]. RESULTS: There was no significant difference in the fitting accuracy between SIN and P3 (P = 0.157), whereas MRER was less precise than SIN (P < 0.001). Fatmax (44 +/- 10% VO2max) and MFO (0.37 +/- 0.16 g x min(-1)) determined using SIN were significantly correlated with MV, P3, and MRER (P < 0.001). The variable of dilatation was correlated with Fatmax, Fatmin, and MFO (r = 0.79, r = 0.67, and r = 0.60, respectively, P < 0.001). CONCLUSIONS: The SIN model presents the same precision as other methods currently used in the determination of Fatmax and MFO but in addition allows calculation of Fatmin. Moreover, the three independent variables are directly related to the main expected modulations of the fat oxidation curve. SIN, therefore, seems to be an appropriate tool in analyzing fat oxidation kinetics obtained during graded exercise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanisms by which CD4(+)CD25(+)Foxp3(+) T (Treg) cells regulate effector T cells in a transplantation setting and their in vivo homeostasis still remain to be clarified. Using a mouse adoptive transfer model, we analyzed the in vivo expansion, trafficking, and effector function of alloreactive T cells and donor-specific Treg cells, in response to a full-thickness skin allograft. Fluorescent-labeled CD4(+)CD25(-) and antigen-specific Treg cells were transferred alone or co-injected into syngeneic BALB/c-Nude recipients transplanted with skins from (C57BL/6 x BALB/c) F1 donors. Treg cells divided in vivo, migrated and accumulated in the allograft draining lymph nodes as well as within the graft. The co-transfer of Treg cells did not modify the early activation and homing of CD4(+)CD25(-) T cells in secondary lymphoid organs. However, in the presence of Treg cells, alloreactive CD4(+)CD25(-) T cells produced significantly less IFN-gamma and were present in reduced numbers in the secondary lymphoid organs. Furthermore, time-course studies showed that Treg cells were recruited into the allograft at a very early stage after transplantation and effectively prevented the infiltration of effector T cells. In conclusion, suppression of rejection requires the early recruitment to the site of antigenic challenge of donor-specific Treg cells, which then mainly regulate the effector arm of T cell alloresponses.