32 resultados para ERP -järjestelmä
em Université de Lausanne, Switzerland
Resumo:
Because we live in an extremely complex social environment, people require the ability to memorize hundreds or thousands of social stimuli. The aim of this study was to investigate the effect of multiple repetitions on the processing of names and faces varying in terms of pre-experimental familiarity. We measured both behavioral and electrophysiological responses to self-, famous and unknown names and faces in three phases of the experiment (in every phase, each type of stimuli was repeated a pre-determined number of times). We found that the negative brain potential in posterior scalp sites observed approximately 170 ms after the stimulus onset (N170) was insensitive to pre-experimental familiarity but showed slight enhancement with each repetition. The negative wave in the inferior-temporal regions observed at approximately 250 ms (N250) was affected by both pre-experimental (famous>unknown) and intra-experimental familiarity (the more repetitions, the larger N250). In addition, N170 and N250 for names were larger in the left inferior-temporal region, whereas right-hemispheric or bilateral patterns of activity for faces were observed. The subsequent presentations of famous and unknown names and faces were also associated with higher amplitudes of the positive waveform in the central-parietal sites analyzed in the 320-900 ms time-window (P300). In contrast, P300 remained unchanged after the subsequent presentations of self-name and self-face. Moreover, the P300 for unknown faces grew more quickly than for unknown names. The latter suggests that the process of learning faces is more effective than learning names, possibly because faces carry more semantic information.
Resumo:
In this tutorial review, we detail both the rationale for as well as the implementation of a set of analyses of surface-recorded event-related potentials (ERPs) that uses the reference-free spatial (i.e. topographic) information available from high-density electrode montages to render statistical information concerning modulations in response strength, latency, and topography both between and within experimental conditions. In these and other ways these topographic analysis methods allow the experimenter to glean additional information and neurophysiologic interpretability beyond what is available from canonical waveform analyses. In this tutorial we present the example of somatosensory evoked potentials (SEPs) in response to stimulation of each hand to illustrate these points. For each step of these analyses, we provide the reader with both a conceptual and mathematical description of how the analysis is carried out, what it yields, and how to interpret its statistical outcome. We show that these topographic analysis methods are intuitive and easy-to-use approaches that can remove much of the guesswork often confronting ERP researchers and also assist in identifying the information contained within high-density ERP datasets.
Resumo:
Sex differences in cognition have been largely investigated. The most consistent sex differences favoring females are observed in object location memory involving the left hemisphere whereas the most consistent sex differences favoring males are observed in tasks that require mental rotation involving the right hemisphere. Here we used a task involving these two abilities to see the impact of mental rotation on object location memory. To that end we used a combination of behavioral and event-related potential (ERP) electroencephalography (EEG) measures.A computer screen displayed a square frame of 4 pairs of images (a "teddy" bear, a shoe, an umbrella and a lamp) randomly arranged around a central fixation cross. After a 10-second interval for memorization, images disappeared and were replaced by a test frame with no image but a random pair of two locations marked in black. In addition, this test frame was randomly displayed either in the original orientation (0° rotation) or in the rotated one (90° clockwise - CW - or 90° counterclockwise - CCW). Preceding the test frame, an arrow indicating the presence or the absence of rotation of the frame was displayed on the screen. The task of the participants (15 females and 15 males) was to determine if two marked locations corresponded or not to a pair of identical images. Each response was followed by feedback.Findings showed no significant sex differences in the performance of the original orientation. In comparison with this position, the rotation of the frame produced an equal decrease of male and female performance. In addition, this decrease was significantly higher when the rotation of the frame was in a CCW direction. We further assessed the ERP when the arrow indicated the direction of rotation as stimulus-onset, during four time windows representing major components C1, P1, N1 and N2. Although no sex differences were observed in performance, brain activities differed according to sex. Enhanced amplitudes were found for the CCW compared to CW rotation over the right posterior areas for the P1, N1 and N2 components for men as well as for women. Major topographical differences related to sex were measured for the CW rotation condition as marked lateralized amplitude: left-hemisphere amplitude larger than right one was measured during P1 time range for men. These similar patterns prolonged from P1 to N1 for women. Early distinctions were found in interaction with sex between CCW and CW waveform amplitudes, expressing over anterior electrode sites during C1 time range (0-50 ms post-stimulus).In conclusion (i) women do not outperform men in object location memory in this study (absence of rotation condition); (ii) mental rotation, in particular the direction of rotation, influences performance on object location memory; (iii) CCW rotation is associated with activity in the right parietal hemisphere whereas the CW rotation involves the left parietal hemisphere; (iv) this last effect is less pronounced in males, which could explain why greater involvement of right parietal areas in men and of bilateral posterior areas in women is generally reported in mental rotation tasks; and (v) the early distinctions between both directions of rotation located over anterior sites could be related to sex differences in their respective involvement of control mechanisms.
Resumo:
Sex differences in cognition have been largely investigated. The most consistent sex differences favoring females are observed in object location memory involving the left hemisphere whereas the most consistent sex differences favoring males are observed in tasks that require mental rotation involving the right hemisphere. Here we used a task involving these two abilities to see the impact of mental rotation on object location memory. To that end we used a combination of behavioral and event-related potential (ERP) electroencephalography (EEG) measures.A computer screen displayed a square frame of 4 pairs of images (a "teddy" bear, a shoe, an umbrella and a lamp) randomly arranged around a central fixation cross. After a 10-second interval for memorization, images disappeared and were replaced by a test frame with no image but a random pair of two locations marked in black. In addition, this test frame was randomly displayed either in the original orientation (0° rotation) or in the rotated one (90° clockwise - CW - or 90° counterclockwise - CCW). Preceding the test frame, an arrow indicating the presence or the absence of rotation of the frame was displayed on the screen. The task of the participants (15 females and 15 males) was to determine if two marked locations corresponded or not to a pair of identical images. Each response was followed by feedback.Findings showed no significant sex differences in the performance of the original orientation. In comparison with this position, the rotation of the frame produced an equal decrease of male and female performance. In addition, this decrease was significantly higher when the rotation of the frame was in a CCW direction. We further assessed the ERP when the arrow indicated the direction of rotation as stimulus-onset, during four time windows representing major components C1, P1, N1 and N2. Although no sex differences were observed in performance, brain activities differed according to sex. Enhanced amplitudes were found for the CCW compared to CW rotation over the right posterior areas for the P1, N1 and N2 components for men as well as for women. Major topographical differences related to sex were measured for the CW rotation condition as marked lateralized amplitude: left-hemisphere amplitude larger than right one was measured during P1 time range for men. These similar patterns prolonged from P1 to N1 for women. Early distinctions were found in interaction with sex between CCW and CW waveform amplitudes, expressing over anterior electrode sites during C1 time range (0-50 ms post-stimulus).In conclusion (i) women do not outperform men in object location memory in this study (absence of rotation condition); (ii) mental rotation, in particular the direction of rotation, influences performance on object location memory; (iii) CCW rotation is associated with activity in the right parietal hemisphere whereas the CW rotation involves the left parietal hemisphere; (iv) this last effect is less pronounced in males, which could explain why greater involvement of right parietal areas in men and of bilateral posterior areas in women is generally reported in mental rotation tasks; and (v) the early distinctions between both directions of rotation located over anterior sites could be related to sex differences in their respective involvement of control mechanisms.
Resumo:
The development of language proficiency extends late into childhood and includes not only producing or comprehending sounds, words and sentences, but likewise larger utterances spanning beyond sentence borders like dialogs. Dialogs consist of information units whose value constantly varies within a verbal exchange. While information is focused when introduced for the first time or corrected in order to alter the knowledge state of communication partners, the same information turns into shared knowledge during the further course of a verbal exchange. In many languages, prosodic means are used by speakers to highlight the informational value of information foci. Our study investigated the developmental pattern of event-related potentials (ERPs) in three age groups (12, 8 and 5 years) when perceiving two information focus types (news and corrections) embedded in short question-answer dialogs. The information foci contained in the answer sentences were either adequately marked by prosodic means or not. In so doing, we questioned to what extent children depend on prosodic means to recognize information foci or whether contextual means as provided by dialog questions are sufficient to guide focus processing.Only 12-year-olds yield prosody-independent ERPs when encountering new and corrective information foci, resembling previous findings in adults. Focus processing in the 8-year-olds relied upon prosodic highlighting, and differing ERP responses as a function of focus type were observed. In the 5-year-olds, merely prosody-driven ERP responses were apparent, but no distinctive ERP indicating information focus recognition. Our findings reveal substantial alterations in information focus perception throughout childhood that are likely related to long-lasting maturational changes during brain development.
Resumo:
Recent theory of physiology of language suggests a dual stream dorsal/ventral organization of speech perception. Using intra-cerebral Event-related potentials (ERPs) during pre-surgical assessment of twelve drug-resistant epileptic patients, we aimed to single out electrophysiological patterns during both lexical-semantic and phonological monitoring tasks involving ventral and dorsal regions respectively. Phonological information processing predominantly occurred in the left supra-marginal gyrus (dorsal stream) and lexico-semantic information occurred in anterior/middle temporal and fusiform gyri (ventral stream). Similar latencies were identified in response to phonological and lexico-semantic tasks, suggesting parallel processing. Typical ERP components were strongly left lateralized since no evoked responses were recorded in homologous right structures. Finally, ERP patterns suggested the inferior frontal gyrus as the likely final common pathway of both dorsal and ventral streams. These results brought out detailed evidence of the spatial-temporal information processing in the dual pathways involved in speech perception.
Resumo:
In this tutorial review, we detail both the rationale for as well as the implementation of a set of analyses of surface-recorded event-related potentials (ERPs) that uses the reference-free spatial (i.e. topographic) information available from high-density electrode montages to render statistical information concerning modulations in response strength, latency, and topography both between and within experimental conditions. In these and other ways these topographic analysis methods allow the experimenter to glean additional information and neurophysiologic interpretability beyond what is available from canonical waveform analyses. In this tutorial we present the example of somatosensory evoked potentials (SEPs) in response to stimulation of each hand to illustrate these points. For each step of these analyses, we provide the reader with both a conceptual and mathematical description of how the analysis is carried out, what it yields, and how to interpret its statistical outcome. We show that these topographic analysis methods are intuitive and easy-to-use approaches that can remove much of the guesswork often confronting ERP researchers and also assist in identifying the information contained within high-density ERP datasets
Resumo:
Single-trial analysis of human electroencephalography (EEG) has been recently proposed for better understanding the contribution of individual subjects to a group-analysis effect as well as for investigating single-subject mechanisms. Independent Component Analysis (ICA) has been repeatedly applied to concatenated single-trial responses and at a single-subject level in order to extract those components that resemble activities of interest. More recently we have proposed a single-trial method based on topographic maps that determines which voltage configurations are reliably observed at the event-related potential (ERP) level taking advantage of repetitions across trials. Here, we investigated the correspondence between the maps obtained by ICA versus the topographies that we obtained by the single-trial clustering algorithm that best explained the variance of the ERP. To do this, we used exemplar data provided from the EEGLAB website that are based on a dataset from a visual target detection task. We show there to be robust correspondence both at the level of the activation time courses and at the level of voltage configurations of a subset of relevant maps. We additionally show the estimated inverse solution (based on low-resolution electromagnetic tomography) of two corresponding maps occurring at approximately 300 ms post-stimulus onset, as estimated by the two aforementioned approaches. The spatial distribution of the estimated sources significantly correlated and had in common a right parietal activation within Brodmann's Area (BA) 40. Despite their differences in terms of theoretical bases, the consistency between the results of these two approaches shows that their underlying assumptions are indeed compatible.
Resumo:
Typically developing (TD) preschoolers and age-matched preschoolers with specific language impairment (SLI) received event-related potentials (ERPs) to four monosyllabic speech sounds prior to treatment and, in the SLI group, after 6 months of grammatical treatment. Before treatment, the TD group processed speech sounds faster than the SLI group. The SLI group increased the speed of their speech processing after treatment. Posttreatment speed of speech processing predicted later impairment in comprehending phrase elaboration in the SLI group. During the treatment phase, change in speed of speech processing predicted growth rate of grammar in the SLI group.
Resumo:
Introduction: Non-invasive brain imaging techniques often contrast experimental conditions across a cohort of participants, obfuscating distinctions in individual performance and brain mechanisms that are better characterised by the inter-trial variability. To overcome such limitations, we developed topographic analysis methods for single-trial EEG data [1]. So far this was typically based on time-frequency analysis of single-electrode data or single independent components. The method's efficacy is demonstrated for event-related responses to environmental sounds, hitherto studied at an average event-related potential (ERP) level. Methods: Nine healthy subjects participated to the experiment. Auditory meaningful sounds of common objects were used for a target detection task [2]. On each block, subjects were asked to discriminate target sounds, which were living or man-made auditory objects. Continuous 64-channel EEG was acquired during the task. Two datasets were considered for each subject including single-trial of the two conditions, living and man-made. The analysis comprised two steps. In the first part, a mixture of Gaussians analysis [3] provided representative topographies for each subject. In the second step, conditional probabilities for each Gaussian provided statistical inference on the structure of these topographies across trials, time, and experimental conditions. Similar analysis was conducted at group-level. Results: Results show that the occurrence of each map is structured in time and consistent across trials both at the single-subject and at group level. Conducting separate analyses of ERPs at single-subject and group levels, we could quantify the consistency of identified topographies and their time course of activation within and across participants as well as experimental conditions. A general agreement was found with previous analysis at average ERP level. Conclusions: This novel approach to single-trial analysis promises to have impact on several domains. In clinical research, it gives the possibility to statistically evaluate single-subject data, an essential tool for analysing patients with specific deficits and impairments and their deviation from normative standards. In cognitive neuroscience, it provides a novel tool for understanding behaviour and brain activity interdependencies at both single-subject and at group levels. In basic neurophysiology, it provides a new representation of ERPs and promises to cast light on the mechanisms of its generation and inter-individual variability.
Resumo:
Using event-related potentials (ERPs), we investigated the neural response associated with preparing to switch from one task to another. We used a cued task-switching paradigm in which the interval between the cue and the imperative stimulus was varied. The difference between response time (RT) to trials on which the task switched and trials on which the task repeated (switch cost) decreased as the interval between cue and target (CTI) was increased, demonstrating that subjects used the CTI to prepare for the forthcoming task. However, the RT on repeated-task trials in blocks during which the task could switch (mixed-task blocks) were never as short as RTs during single-task blocks (mixing cost). This replicates previous research. The ERPs in response to the cue were compared across three conditions: single-task trials, switch trials, and repeat trials. ERP topographic differences were found between single-task trials and mixed-task (switch and repeat) trials at approximately 160 and approximately 310 msec after the cue, indicative of changes in the underlying neural generator configuration as a basis for the mixing cost. In contrast, there were no topographic differences evident between switch and repeat trials during the CTI. Rather, the response of statistically indistinguishable generator configurations was stronger at approximately 310 msec on switch than on repeat trials. By separating differences in ERP topography from differences in response strength, these results suggest that a reappraisal of previous research is appropriate.
Resumo:
Detection and discrimination of visuospatial input involve at least extracting, selecting and encoding relevant information and decision-making processes allowing selecting a response. These two operations are altered, respectively, by attentional mechanisms that change discrimination capacities, and by beliefs concerning the likelihood of uncertain events. Information processing is tuned by the attentional level that acts like a filter on perception, while decision-making processes are weighed by subjective probability of risk. In addition, it has been shown that anxiety could affect the detection of unexpected events through the modification of the level of arousal. Consequently, purpose of this study concerns whether and how decision-making and brain dynamics are affected by anxiety. To investigate these questions, the performance of women with either a high (12) or a low (12) STAI-T (State-Trait Anxiety Inventory, Spielberger, 1983) was examined in a decision-making visuospatial task where subjects have to recognize a target visual pattern from non-target patterns. The target pattern was a schematic image of furniture arranged in such a way as to give the impression of a living room. Non-target patterns were created by either the compression or the dilatation of the distances between objects. Target and non-target patterns were always presented in the same configuration. Preliminary behavioral results show no group difference in reaction time. In addition, visuo-spatial abilities were analyzed trough the signal detection theory for quantifying perceptual decisions in the presence of uncertainty (Green and Swets, 1966). This theory treats detection of a stimulus as a decision-making process determined by the nature of the stimulus and cognitive factors. Astonishingly, no difference in d' (corresponding to the distance between means of the distributions) and c (corresponds to the likelihood ratio) indexes was observed. Comparison of Event-related potentials (ERP) reveals that brain dynamics differ according to anxiety. It shows differences in component latencies, particularly a delay in anxious subjects over posterior electrode sites. However, these differences are compensated during later components by shorter latencies in anxious subjects compared to non-anxious one. These inverted effects seem indicate that the absence of difference in reaction time rely on a compensation of attentional level that tunes cortical activation in anxious subjects, but they have to hammer away to maintain performance.
Resumo:
While the dynamics of lexical-semantic and lexical-phonological encoding in word production have been investigated in several event-related potential (ERP) studies, the estimated time course of phonological-phonetic encoding is the result of rather indirect evidence. We investigated the dynamics of phonological-phonetic encoding combining ERP analyses covering the entire encoding process in picture naming and word reading tasks by comparing ERP modulations in eight brain-damaged speakers presenting impaired phonological-phonetic encoding relative to 16 healthy controls. ERPs diverged between groups in terms of local waveform amplitude and global topography at ∼400ms after stimulus onset in the picture naming task and at ∼320-350ms in word reading and sustained until 100ms before articulation onset. These divergences appeared in later time windows than those found in patients with underlying lexical-semantic and lexical-phonological impairment in previous studies, providing evidence that phonological-phonetic encoding is engaged around 400ms in picture naming and around 330ms in word reading.
Resumo:
The current study on German investigates Event-Related brain Potentials (ERPs) for the perception of sentences with intonations which are infrequent (i.e. vocatives) or inadequate in daily conversation. These ERPs are compared to the processing correlates for sentences in which the syntax-to-prosody relations are congruent and used frequently during communication. Results show that perceiving an adequate but infrequent prosodic structure does not result in the same brain responses as encountering an inadequate prosodic pattern. While an early negative-going ERP followed by an N400 were observed for both the infrequent and the inadequate syntax-to-prosody association, only the inadequate intonation also elicits a P600.