37 resultados para ENZYME-CATALYZED SYNTHESIS
em Université de Lausanne, Switzerland
Resumo:
Rhea (http://www.ebi.ac.uk/rhea) is a comprehensive resource of expert-curated biochemical reactions. Rhea provides a non-redundant set of chemical transformations for use in a broad spectrum of applications, including metabolic network reconstruction and pathway inference. Rhea includes enzyme-catalyzed reactions (covering the IUBMB Enzyme Nomenclature list), transport reactions and spontaneously occurring reactions. Rhea reactions are described using chemical species from the Chemical Entities of Biological Interest ontology (ChEBI) and are stoichiometrically balanced for mass and charge. They are extensively manually curated with links to source literature and other public resources on metabolism including enzyme and pathway databases. This cross-referencing facilitates the mapping and reconciliation of common reactions and compounds between distinct resources, which is a common first step in the reconstruction of genome scale metabolic networks and models.
Resumo:
UniPathway (http://www.unipathway.org) is a fully manually curated resource for the representation and annotation of metabolic pathways. UniPathway provides explicit representations of enzyme-catalyzed and spontaneous chemical reactions, as well as a hierarchical representation of metabolic pathways. This hierarchy uses linear subpathways as the basic building block for the assembly of larger and more complex pathways, including species-specific pathway variants. All of the pathway data in UniPathway has been extensively cross-linked to existing pathway resources such as KEGG and MetaCyc, as well as sequence resources such as the UniProt KnowledgeBase (UniProtKB), for which UniPathway provides a controlled vocabulary for pathway annotation. We introduce here the basic concepts underlying the UniPathway resource, with the aim of allowing users to fully exploit the information provided by UniPathway.
Resumo:
Angiotensin converting enzyme (ACE) inhibitors are widely used today for the management of hypertension and congestive heart failure. These agents inhibit angiotensin II synthesis. In some particular circumstances they may be responsible for deterioration of renal function, e.g. in hypertensive patients with bilateral renal artery stenosis or with stenosis of the artery supplying a single kidney, or in patients with severe congestive heart failure or marked nephroangiosclerosis. In these patients renal perfusion pressure may become too low to maintain adequate glomerular filtration as there remains no angiotensin II to increase the tone of the efferent arteriole. In high risk patients it is therefore recommended that serum creatinine be checked after initiating therapy with an ACE inhibitor.
Resumo:
Sequence homologies suggest that the Bacillus subtilis 168 tagO gene encodes UDP-N-acetylglucosamine:undecaprenyl-P N-acetylglucosaminyl 1-P transferase, the enzyme responsible for catalysing the first step in the synthesis of the teichoic acid linkage unit, i.e. the formation of undecaprenyl-PP-N-acetylglucosamine. Inhibition of tagO expression mediated by an IPTG-inducible P(spac) promoter led to the development of a coccoid cell morphology, a feature characteristic of mutants blocked in teichoic acid synthesis. Indeed, analyses of the cell-wall phosphate content, as well as the incorporation of radioactively labelled precursors, revealed that the synthesis of poly(glycerol phosphate) and poly(glucosyl N-acetylgalactosamine 1-phosphate), the two strain 168 teichoic acids known to share the same linkage unit, was affected. Surprisingly, under phosphate limitation, deficiency of TagO precludes the synthesis of teichuronic acid, which is normally induced under these conditions. The regulatory region of tagO, containing two partly overlapping sigma(A)-controlled promoters, is similar to that of sigA, the gene encoding the major sigma factor responsible for growth. Here, the authors discuss the possibility that TagO may represent a pivotal element in the multi-enzyme complexes responsible for the synthesis of anionic cell-wall polymers, and that it may play one of the key roles in balanced cell growth.
Resumo:
A gene, named AtECH2, has been identified in Arabidopsis thaliana to encode a monofunctional peroxisomal enoyl-CoA hydratase 2. Homologues of AtECH2 are present in several angiosperms belonging to the Monocotyledon and Dicotyledon classes, as well as in a gymnosperm. In vitro enzyme assays demonstrated that AtECH2 catalyzed the reversible conversion of 2E-enoyl-CoA to 3R-hydroxyacyl-CoA. AtECH2 was also demonstrated to have enoyl-CoA hydratase 2 activity in an in vivo assay relying on the synthesis of polyhydroxyalkanoate from the polymerization of 3R-hydroxyacyl-CoA in the peroxisomes of Saccharomyces cerevisiae. AtECH2 contained a peroxisome targeting signal at the C-terminal end, was addressed to the peroxisome in S. cerevisiae, and a fusion protein between AtECH2 and a fluorescent protein was targeted to peroxisomes in onion cells. AtECH2 gene expression was strongest in tissues with high beta-oxidation activity, such as germinating seedlings and senescing leaves. The contribution of AtECH2 to the degradation of unsaturated fatty acids was assessed by analyzing the carbon flux through the beta-oxidation cycle in plants that synthesize peroxisomal polyhydroxyalkanoate and that were over- or underexpressing the AtECH2 gene. These studies revealed that AtECH2 participates in vivo to the conversion of the intermediate 3R-hydroxyacyl-CoA, generated by the metabolism of fatty acids with a cis (Z)-unsaturated bond on an even-numbered carbon, to the 2E-enoyl-CoA for further degradation through the core beta-oxidation cycle.
Resumo:
The HER-2/ErbB-2 oncoprotein is overexpressed in human breast and ovarian adenocarcinomas and is clearly associated with the malignant phenotype. Although no specific ligand for this receptor has been positively identified, ErbB-2 was shown to play a central role in a network of interactions with the related ErbB-1, ErbB-3 and ErbB-4 receptors. We have selected new peptides binding to ErbB-2 extracellular domain protein (ECD) by screening 2 newly developed constrained and unconstrained random hexapeptide phage libraries. Out of 37 phage clones, which bound specifically to ErbB-2 ECD, we found 6 constrained and 10 linear different hexapeptide sequences. Among the latter, 5 consensus motifs, all with a common methionine and a positively charged residue at positions 1 and 3, respectively, were identified. Furthermore, 3 representative hexapeptides were fused to a coiled-coil pentameric recombinant protein to form the so-called peptabodies recently developed in our laboratory. The 3 peptabodies bound specifically to the ErbB-2 ECD, as determined by enzyme-linked immunosorbent assay and BIAcore analysis and to tumor cells overexpressing ErbB-2, as shown by flow cytometry. Interestingly, one of the free selected linear peptides and all 3 peptabodies inhibited the proliferation of tumor cells overexpressing ErbB-2. In conclusion, a novel type of ErbB-2-specific ligand is described that might complement presently available monoclonal antibodies.
Resumo:
RESUME Staphylococcus aureus est un important pathogène à gram-positif, à la fois responsable d'infections nosocomiales et communautaires. Le S. aureus résistant à la méthicilline est intrinsèquement résistant aux bêta-lactamines, inhibiteurs de la synthèse de la paroi bactérienne, grâce à une enzyme nouvellement acquise, la protéine liant la pénicilline 2A, caractérisée par une faible affinité pour ces agents et pouvant poursuivre la synthèse de la paroi, alors que les autres enzymes sont bloquées. Ce micro-organisme a également développé des résistances contre quasiment tous les antibiotiques couramment utilisés en clinique. Parallèlement au développement de molécules entièrement nouvelles, il peut être utile d'explorer d'éventuelles caractéristiques inattendues de médicaments déjà existants, par exemple en les combinant, dans l'espoir d'un potentiel effet synergique. Comprendre les mécanismes de tels effets synergiques pourrait contribuer à la justification de leur utilisation clinique potentielle. Récemment, un effet synergique contre le S. aureus résistant à la méthicilline a été décrit entre la streptogramine quinupristine-datfopristine et les bêta-lactamines, aussi bien in vitro qu'in vivo. Le présent travail a pour but de proposer un modèle pour le mécanisme de cette interaction positive et de l'étendre à d'autres classes d'antibiotiques. Premièrement, un certain nombre de méthodes microbiologiques ont permis de mieux cerner la nature de cette interaction, en montrant qu'elle agissait spécifiquement sur le S. aureus résistant à la méthicilline et qu'elle était restreinte à l'association entre inhibiteurs de la synthèse des protéines et bêta-lactamines. Deuxièmement, L'observation de l'influence des inhibiteurs de la synthèse des protéines sur la machinerie de la paroi bactérienne, c'est-à-dire sur l'expression des protéines liant la pénicilline, responsables de la synthèse du peptidoglycan, a montré une diminution de la quantité de ta protéine liant la pénicilline 2, connue pour posséder une activité de transglycosylation, indispensable au bon fonctionnement de la protéine liant la pénicilline 2A, responsable de la résistance à la méthicilline. Troisièmement, l'analyse fine de la composition du peptidoglycan extrait de bactéries, avant ou après traitement par des inhibiteurs de la synthèse des protéines, a montré des altérations corrélant avec leur capacité à agir en synergie avec les bêta-lactamines contre S. aureus résistant à ta méthicilline. Ces altérations dans les muropeptides pourraient représenter une signature de la diminution de la quantité de la protéine liant la pénicilline 2. Le modèle mécanistique retenu considère que les inhibiteurs de la synthèse des protéines pourraient diminuer l'expression de la protéine Liant la pénicilline 2, indispensable à la résistance à la méthiciltine, et que ce déséquilibre dans les enzymes synthétisant la paroi bactérienne pourrait générer une signature dans les muropeptides. SUMMARY Staphylococcus aureus is a major gram-positive pathogen causing both hospital-acquired and community-acquired infections. Methicillin- resistant Staphylococcus aureus is intrinsically resistant to the cell wall inhibitors beta-lactams by virtue of a newly acquired cell-wall-building enzyme, tow-affinity penicillin-binding protein 2A, which can build the wall when other penicillin-binding proteins are blocked. Moreover, the microorganism has developed resistance to virtually all non-experimental antibiotics. In addition of producing entirely new molecules, it is useful to explore unexpected features of existing drugs, for example by using them in combination, expecting drug synergisms. Understanding the mechanisms of such synergisms would help justify their putative clinical utilization. Recently, a synergism between the streptogramin quinupristin-dalfopristin and beta-lactams was reported against methicillin-resistant S. aureus, both in vitro and in vivo. The present work intends to propose a model for the mechanism of this positive interaction and to extend it to other drug classes. First, microbiological experimentation helped better defining the nature of this interaction, restricting it to methicillin-resistant S. aureus, and to the association of protein synthesis inhibitors with beta-lactams. Second, the observation of inhibitors of protein synthesis influence on the cell-wall-building machinery, i.e. on the expression of penicillin-binding proteins responsible for peptidoglycan synthesis, showed a decrease in the amount of penicillin-binding protein 2, known to provide a transglycosylase activity for glycan chain elongation, indispensable for the functionality of the low-affinity penicillin-binding protein 2A responsible for methicillin resistance. Third, the fine analysis of the peptidoglycan composition purified from bacteria before or after treatment with inhibitors of protein synthesis showed alterations that correlated with their ability to synergize with beta-lactams against methicillin-resistant S. aureus. These muropeptide alterations could be the signature of decrease in the amount of penicillin-binding protein 2. The retained mechanistic model is that inhibitors of protein synthesis could decrease the expression of penicillin-binding protein 2, wich is indispensable for methicillin-resistance, and that this imbalance in cell-wall-building enzymes could generate a muropeptide signature.
Resumo:
Summary Polyhydroxyalkanoates (PHAs) represent a family of polyesters naturally synthesized by a wide variety of bacteria. Through their thermoplastic and elastomeric qualities, together with their biodegradable and renewable properties, they are predicted to be a good alternative to the petroleum- derived plastics. Nevertheless, as PHA production costs using bacteria fermentation are still too high, PHA synthesis within eukaryotic systems, such as plants, has been elaborated. Although the costs were then efficiently lowered, the yield of PHAs produced remained low. In this study, Saccharomyces cerevisae has been used as another eukaryotic model in order to reveal the steps which limit PHA production. These cells express the PHA synthase of Pseudomonas aeruginosa and the PHAs obtained were analyzed to understand the flux of fatty acids towards and through the peroxisomal β-oxidation core cycle, generating the main substrate of the PHA synthase. When S. cerevisiae wild-type cells are grown in a media containing glucose as carbon source as well as fatty acids, the PHA monomer composition is largely influenced by the nature of the external fatty acid used. Thus, even-chain PHA monomers are generated from oleic acid (18:1Δ9cis) and odd- chain PHA monomers are generated from heptadecenoic acid (17:1Δ. 10 cis). Moreover, PHA synthesis is dependent on the first two enzymes of the 0-oxidation core cycle, the acyl-CoA oxidase and the multifunctional enzyme enoyl-CoA hydratase II / R-3-hydroxyacyl-CoA dehydrogenase. S. cerevisiae mutant cells growing on oleic or heptadecenoic acid and deficient in either the R-3- hydroxyacyl-CoA dehydrogenase or in the 3-ketothiolase activity, the last β-oxidation cycle steps, surprisingly contained PHAs of predominantly even-chain monomers. This is also noticed in wild- type and mutants grown on glucose or raffinose, indicating that the substrate used for PHA synthesis is generated from the degradation of intracellular short- and medium-chain fatty acids by the 3- oxidation cycle. Inhibition of fatty acid biosynthesis by cerulenin blocks the synthesis of PHAs from intracellular fatty acids but still enables the use of extracellular fatty acids for polymer production. Together, these results uncovered the existence of a substantial futile cycle whereby short- and medium-chain intermediates of the cytoplasmic fatty acid biosynthetic pathway are directed towards the peroxisomal β-oxidation pathway. In this thesis, no increase of the yield of PHA produced could be obtained. But the PHA synthesis confirmed the carbon flux into and through the β-oxidation core cycle and unveiled the existence of novel mechanisms. It is thus a good tool to study in vivo the flux of carbons in S. cerevisiae cells. Résumé Les polyhydroxyalkanoates (PHAs) sont une famille de polyesters naturellement synthétisés par un grand nombre de bactéries. Ayant des propriétés de thermoplastiques, d'élastomères et étant des ressources biodégradables et renouvelables, les PHAs représentent une bonne alternative aux plastiques dérivés du pétrole. Pour pallier aux coûts considérables de la production de PHAs par fermentation bactérienne, la synthèse de PHAs par des systèmes eucaryotes telles les plantes a été élaborée. Les coûts ont ainsi efficacement été diminués, mais le rendement de PHAs produits reste faible. Dans cette étude, Saccharomyces cerevisiae a été utilisé comme autre modèle eucaryote pour révéler les étapes limitantes de la production de PHAs. Les PHAs obtenus dans les cellules exprimant la F'HA synthase de Pseudomonas aeruginosa ont été analysés afin de comprendre le flux d'acides gras vers et à travers le cycle péroxisomal de la β-oxidation, principal producteur du substrat de la PHA synthase. Lorsque la souche S. cerevisiae de type sauvage se développe dans un milieu contenant du glucose et des acides gras, la composition des monomères de PHAs est influencée par la nature des acides gras extracellulaires. Ainsi, les monomères pairs sont générés par l'acide oléique (18:1Δ9cis), tandis que les impairs le sont par l'acide heptadécénoïque (17:1Δ10cis). La synthèse de PHAs est dépendante des deux premières enzymes de la β-oxidation; l'acyl-CoA oxidase et l'enzyme multifonctionnelle enoyl-CoA hydratase II / R-3-hydroxyacyl-CoA déshydrogénase. Les souches mutantes ne possédant pas les activités de la R-3-hydroxyacyl-CoA déshydrogénase ou de la 3- ketothiolase contiennent, en présence d'acide oléique ou heptadécénoïque, des PHAs composés essentiellement de monomères pairs. Cela a également été observé en présence de glucose ou de raffinose uniquement. Le substrat utilisé pour la synthèse de PHAs a ainsi été généré par la dégradation d'acides gras intracellulaires à chaîne courte et moyenne via le cycle de la β-oxidation. L'inhibition de la synthèse d'acides gras par la cérulénine a bloqué la synthèse de PHAs par les acides gras internes. Ces résultats ont révélés l'existence d'un cycle futile par lequel des intermédiaires à chaîne courte et moyenne de la synthèse cytoplasmique d'acides gras sont dirigés vers le cycle péroxisomal de la β-oxidation. Dans cette étude, le rendement de PHAs produits reste inchangé, mais l'analyse des PHAs permet de confirmer le flux de carbones vers et à travers le cycle péroxisomal de la β-oxidation et l'existence de nouveaux méchanismes a été dévoilée. Cette synthèse s'avère être un bon outil pour étudier in vivo le flux de carbones dans les cellules de S. cerevisiae.
Resumo:
Abstract Genetic studies have shown an association between schizophrenia and a GAG trinucleotide repeat (TNR) polymorphism in the catalytic subunit (GCLC) of the glutamate cysteine ligase (GCL), the key enzyme for glutathione (GSH) synthesis. The present study was aimed at analyzing the influence of a GSH dysregulation of genetic origin on plasma thiols (total cysteine, homocysteine, and cysteine-glycine) and other free amino acid levels as well as fibroblast cultures GSH levels. Plasma thiols levels were also compared between patients and controls. As compared with patients with a low-risk GCLC GAG TNR genotype, patients with a high-risk genotype, having an impaired GSH synthesis, displayed a decrease of fibroblast GSH and plasma total cysteine levels, and an increase of the oxidized form of cysteine (cystine) content. Increased levels of plasma free serine, glutamine, citrulline, and arginine were also observed in the high-risk genotype. Taken together, the high-risk genotypes were associated with a subgroup of schizophrenia characterized by altered plasma thiols and free amino acid levels that reflect a dysregulation of redox control and an increased susceptibility to oxidative stress. This altered pattern potentially contributes to the development of a biomarker profile useful for early diagnosis and monitoring the effectiveness of novel drugs targeting redox dysregulation in schizophrenia. Antioxid. Redox Signal. 15, 2003-2010.
Resumo:
Plants possess a family of potent fatty acid-derived wound-response and developmental regulators: the jasmonates. These compounds are derived from the tri-unsaturated fatty acids alpha-linolenic acid (18:3) and, in plants such as Arabidopsis thaliana and tomato, 7(Z)-, 10(Z)-, and 13(Z)-hexadecatrienoic acid (16:3). The lipoxygenase-catalyzed addition of molecular oxygen to alpha-linolenic acid initiates jasmonate synthesis by providing a 13-hydroperoxide substrate for formation of an unstable allene oxide by allene oxide synthase (AOS). This allene oxide then undergoes enzyme-guided cyclization to produce 12-oxophytodienoic acid (OPDA). These first steps take place in plastids, but further OPDA metabolism occurs in peroxisomes. OPDA has several fates, including esterification into plastid lipids and transformation into the 12-carbon prohormone jasmonic acid (JA). JA is itself a substrate for further diverse modifications, including the production of jasmonoyl-isoleucine (JA-Ile), which is a major biologically active jasmonate among a growing number of jasmonate derivatives. Each new jasmonate family member that is discovered provides another key to understanding the fine control of gene expression in immune responses; in the initiation and maintenance of long-distance signal transfer in response to wounding; in the regulation of fertility; and in the turnover, inactivation, and sequestration of jasmonates, among other processes.
Resumo:
Objective: Converging evidence speak in favor of an abnormal susceptibility to oxidative stress in schizophrenia. A decreased level of glutathione (GSH), the principal non-protein antioxidant and redox regulator, was observed both in cerebrospinal-fluid and prefrontal cortex of schizophrenia patients (Do et al., 2000). Results: Schizophrenia patients have an abnormal GSH synthesis most likely of genetic origin: Two independent case-control studies showed a significant association between schizophrenia and a GAG trinucleotide repeat (TNR) polymorphism in the GSH key synthesizing enzyme glutamate-cysteine-ligase (GCL) catalytic subunit (GCLC) gene. The most common TNR genotype 7/7 was more frequent in controls, whereas the rarest TNR genotype 8/8 was three times more frequent in patients. The disease-associated genotypes correlated with a decrease in GCLC protein expression, GCL activity and GSH content. Such a redox dysregulation during development could underlie the structural and functional anomalies in connectivity: In experimental models, GSH deficit induced anomalies similar to those observed in patients. (a) morphology: In animal models with GSH deficit during the development we observed in prefrontal cortex a decreased dendritic spines density in pyramidal cells and an abnormal development of parvalbumine (but not of calretinine) immunoreactive GABA interneurones in anterior cingulate cortex. (b) physiology: GSH depletion in hippocampal slices induces NMDA receptors hypofunction and an impairment of long term potentiation. In addition, GSH deficit affected the modulation of dopamine on NMDA-induced Ca 2+ response in cultured cortical neurons. While dopamine enhanced NMDA responses in control neurons, it depressed NMDA responses in GSH-depleted neurons. Antagonist of D2-, but not D1-receptors, prevented this depression, a mechanism contributing to the efficacy of antipsychotics. The redox sensitive ryanodine receptors and L-type calcium channels underlie these observations. (c) cognition: Developing rats with low [GSH] and high dopamine lead deficit in olfactory integration and in object recognition which appears earlier in males that females, in analogy to the delay of the psychosis onset between man and woman. Conclusion: These clinical and experimental evidence, combined with the favorable outcome of a clinical trial with N-Acetyl Cysteine, a GSH precursor, on both the negative symptoms (Berk et al., submitted) and the mismatch negativity in an auditory oddball paradigm supported the proposal that a GSH synthesis impairment of genetic origin represent, among other factors, one major risk factor in schizophrenia.
Resumo:
Transgenic plants producing peroxisomal polyhydroxy- alkanoate (PHA) from intermediates of fatty acid degradation were used to study carbon flow through the beta-oxidation cycle. Growth of transgenic plants in media containing fatty acids conjugated to Tween detergents resulted in an increased accumulation of PHA and incorporation into the polyester of monomers derived from the beta-oxidation of these fatty acids. Tween-laurate was a stronger inducer of beta-oxidation, as measured by acyl-CoA oxidase activity, and a more potent modulator of PHA quantity and monomer composition than Tween-oleate. Plants co-expressing a peroxisomal PHA synthase with a capryl-acyl carrier protein thioesterase from Cuphea lanceolata produced eightfold more PHA compared to plants expressing only the PHA synthase. PHA produced in double transgenic plants contained mainly saturated monomers ranging from 6 to 10 carbons, indicating an enhanced flow of capric acid towards beta-oxidation. Together, these results support the hypothesis that plant cells have mechanisms which sense levels of free or esterified unusual fatty acids, resulting in changes in the activity of the beta-oxidation cycle as well as removal and degradation of these unusual fatty acids through beta-oxidation. Such enhanced flow of fatty acids through beta-oxidation can be utilized to modulate the amount and composition of PHA produced in transgenic plants. Furthermore, synthesis of PHAs in plants can be used as a new tool to study the quality and relative quantity of the carbon flow through beta-oxidation as well as to analyse the degradation pathway of unusual fatty acids.
Resumo:
Plants possess an interrelated family of potent fatty acid-derived regulators-the jasmonates. These compounds, which play roles in both defense and development, are derived from tri-unsaturated fatty acids [alpha-linolenic acid (18:3) or 7Z,10Z,13Z-hexadecatrienoic acid (16:3)]. The lipoxygenase-catalyzed addition of molecular oxygen to alpha-linolenic acid initiates jasmonate synthesis by providing a 13-hydroperoxide substrate for the formation of an unstable allene oxide that is then subject to enzyme-guided cyclization to produce 12-oxo-phytodienoic acid (OPDA). OPDA has several fates, including esterification into plastid lipids or transformation into the 12-carbon co-regulator jasmonic acid (JA). JA, the best-characterized member of the family, regulates both male and female fertility (depending on the plant species) and is an important mediator of defense gene expression. JA is itself a substrate for further diverse modifications. Genetic dissection of the pathway is revealing how the different jasmonates modulate different physiological processes. Each new family member that is discovered provides another key to understanding the fine control of gene expression in immune responses, in the initiation and maintenance of long-distance signal transfer in response to wounding, in the regulation of fertility, and in the turnover, inactivation, and sequestration of jasmonates, among other processes. The Jasmonate Biochemical Pathway provides an overview of the growing jasmonate family, and new members will be included in future versions of the Connections Map.
Resumo:
Short-chain-length-medium-chain-length polyhydroxyalkanoates were synthesized in Saccharomyces cerevisiae from intermediates of the beta-oxidation cycle by expressing the polyhydroxyalkanoate synthases from Aeromonas caviae and Ralstonia eutropha in the peroxisomes. The quantity of polymer produced was increased by using a mutant of the beta-oxidation-associated multifunctional enzyme with low dehydrogenase activity toward R-3-hydroxybutyryl coenzyme A.
Resumo:
The development of RGD-based antagonist of αvβ3 integrin receptor has enhanced the interest in PET probes to image this receptor for the early detection of cancer, to monitor the disease progression and the response to therapy. In this work, a novel prosthetic group (N-(4-fluorophenyl)pent-4-ynamide or FPPA) for the (18)F-labeling of an αvβ3 selective RGD-peptide was successfully prepared. [(18)F]FPPA was obtained in three steps with a radiochemical yield of 44% (decay corrected). Conjugation to c(RGDfK(N3)) by the Cu(II) catalyzed Huisgen azido alkyne cycloaddition provided the [(18)F]FPPA-c(RGDfK) with a radiochemical yield of 29% (decay corrected), in an overall synthesis time of 140min.