5 resultados para ENVIRONMENTAL IMPACTS

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background, aim, and scope A coupled Life Cycle Costing and life cycle assessment has been performed for car-bodies of the Korean Tilting Train eXpress (TTX) project using European and Korean databases, with the objective of assessing environmental and cost performance to aid materials and process selection. More specifically, the potential of polymer composite car-body structures for the Korean Tilting Train eXpress (TTX) has been investigated. Materials and methods This assessment includes the cost of both carriage manufacturing and use phases, coupled with the life cycle environmental impacts of all stages from raw material production, through carriage manufacture and use, to end-of-life scenarios. Metallic carriages were compared with two composite options: hybrid steel-composite and full-composite carriages. The total planned production for this regional Korean train was 440 cars, with an annual production volume of 80 cars. Results and discussion The coupled analyses were used to generate plots of cost versus energy consumption and environmental impacts. The results show that the raw material and manufacturing phase costs are approximately half of the total life cycle costs, whilst their environmental impact is relatively insignificant (3-8%). The use phase of the car-body has the largest environmental impact for all scenarios, with near negligible contributions from the other phases. Since steel rail carriages weigh more (27-51%), the use phase cost is correspondingly higher, resulting in both the greatest environmental impact and the highest life cycle cost. Compared to the steel scenario, the hybrid composite variant has a lower life cycle cost (16%) and a lower environmental impact (26%). Though the full composite rail carriage may have the highest manufacturing cost, it results in the lowest total life cycle costs and lowest environmental impacts. Conclusions and recommendations This coupled cost and life cycle assessment showed that the full composite variant was the optimum solution. This case study showed that coupling of technical cost models with life cycle assessment offers an efficient route to accurately evaluate economic and environmental performance in a consistent way.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Psychoses are complex diseases resulting from the interaction between genetic vulnerability factors and various environmental risk factors during the brain development and leading to the emergence of the clinical phenotype at the end of adolescence. Among the mechanisms involved, a redox imbalance plays an important role, inducing oxidative stress damaging to developing neurons. As a consequence, the excitatory/inhibitory balance in cortex and the pathways connecting brain areas are both impaired. Childhood and adolescence appear as critical periods of vulnerability for deleterious environmental insults. Antioxidants, applied during the environmental impacts, should allow preventing these impairments as well as their clinical consequences.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Agenda 21 for the Geneva region is the results from a broad consultation process including all local actors. The article 12 stipulates that « the State facilitates possible synergies between economic activities in order to minimize their environmental impacts » thus opening the way for Industrial Ecology (IE) and Industrial Symbiosis (IS). An Advisory Board for Industrial Ecology and Industrial Symbiosis implementation was established in 2002 involving relevant government agencies. Regulatory and technical conditions for IS are studied in the Swiss context. Results reveal that the Swiss law on waste does not hinder by-product exchanges. Methodology and technical factors including geographic, qualitative, quantitative and economical aspects are detailed. The competition with waste operators in a highly developed recycling system is also tackled.The IS project develops an empirical and systematic method for detecting and implementing by-products synergies between industrial actors disseminated throughout the Geneva region. Database management tool for the treatment of input-output analysis data and GIS tools for detecting potentials industrial partners are constantly improved. Potential symbioses for 17 flows (including energy, water and material flows) are currently studied for implementation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sustainable resource use is one of the most important environmental issues of our times. It is closely related to discussions on the 'peaking' of various natural resources serving as energy sources, agricultural nutrients, or metals indispensable in high-technology applications. Although the peaking theory remains controversial, it is commonly recognized that a more sustainable use of resources would alleviate negative environmental impacts related to resource use. In this thesis, sustainable resource use is analysed from a practical standpoint, through several different case studies. Four of these case studies relate to resource metabolism in the Canton of Geneva in Switzerland: the aim was to model the evolution of chosen resource stocks and flows in the coming decades. The studied resources were copper (a bulk metal), phosphorus (a vital agricultural nutrient), and wood (a renewable resource). In addition, the case of lithium (a critical metal) was analysed briefly in a qualitative manner and in an electric mobility perspective. In addition to the Geneva case studies, this thesis includes a case study on the sustainability of space life support systems. Space life support systems are systems whose aim is to provide the crew of a spacecraft with the necessary metabolic consumables over the course of a mission. Sustainability was again analysed from a resource use perspective. In this case study, the functioning of two different types of life support systems, ARES and BIORAT, were evaluated and compared; these systems represent, respectively, physico-chemical and biological life support systems. Space life support systems could in fact be used as a kind of 'laboratory of sustainability' given that they represent closed and relatively simple systems compared to complex and open terrestrial systems such as the Canton of Geneva. The chosen analysis method used in the Geneva case studies was dynamic material flow analysis: dynamic material flow models were constructed for the resources copper, phosphorus, and wood. Besides a baseline scenario, various alternative scenarios (notably involving increased recycling) were also examined. In the case of space life support systems, the methodology of material flow analysis was also employed, but as the data available on the dynamic behaviour of the systems was insufficient, only static simulations could be performed. The results of the case studies in the Canton of Geneva show the following: were resource use to follow population growth, resource consumption would be multiplied by nearly 1.2 by 2030 and by 1.5 by 2080. A complete transition to electric mobility would be expected to only slightly (+5%) increase the copper consumption per capita while the lithium demand in cars would increase 350 fold. For example, phosphorus imports could be decreased by recycling sewage sludge or human urine; however, the health and environmental impacts of these options have yet to be studied. Increasing the wood production in the Canton would not significantly decrease the dependence on wood imports as the Canton's production represents only 5% of total consumption. In the comparison of space life support systems ARES and BIORAT, BIORAT outperforms ARES in resource use but not in energy use. However, as the systems are dimensioned very differently, it remains questionable whether they can be compared outright. In conclusion, the use of dynamic material flow analysis can provide useful information for policy makers and strategic decision-making; however, uncertainty in reference data greatly influences the precision of the results. Space life support systems constitute an extreme case of resource-using systems; nevertheless, it is not clear how their example could be of immediate use to terrestrial systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nanotechnology encompasses the design, characterisation, production and application of materials and systems by controlling shape and size at the nanoscale (nanometres). Nanomaterials may differ from other materials because of their relatively large specific surface area, such that surface properties become particularly important. There has been rapid growth in investment in nanotechnology by both the public and private sectors worldwide. In the EU, nanotechnology is expected to become an important strategic contributor to achieving economic gain and societal and individual benefits. At the same time there is continuing scientific uncertainty and controversy about the safety of nanomaterials. It is important to ensure that timely policy development takes this into consideration. Uncertainty about safety may lead to polarised public debate and to business unwillingness to invest further. A clear regulatory framework to address potential health and environmental impacts, within the wider context of evaluating and communicating the benefit-risk balance, must be a core part of Europe's integrated efforts for nanotechnology innovation. While a number of studies have been carried out on the effect of environmental nanoparticles, e.g. from combustion processes, on human health, there is yet no generally acceptable paradigm for safety assessment of nanomaterials in consumer and other products. Therefore, a working group was established to consider issues for the possible impact of nanomaterials on human health focussing specifically on engineered nanomaterials. This represents the first joint initiative between EASAC and the Joint Research Centre of the European Commission. The working group was given the remit to describe the state of the art of benefits and potential risks, current methods for safety assessment, and to evaluate their relevance, identify knowledge gaps in studying the safety of current nanomaterials, and recommend on priorities for nanomaterial research and the regulatory framework. This report focuses on key principles and issues, cross-referencing other sources for detailed information, rather than attempting a comprehensive account of the science. The focus is on human health although environmental effects are also discussed when directly relevant to health