3 resultados para ENTAMOEBA HISTOLYTICA

em Université de Lausanne, Switzerland


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using genetically matched azole-susceptible (AS) and azole-resistant (AR) clinical isolates of Candida albicans, we recently demonstrated that CDR1 overexpression in AR isolates is due to its enhanced transcriptional activation and mRNA stability. This study examines the molecular mechanisms underlying enhanced CDR1 mRNA stability in AR isolates. Mapping of the 3' untranslated region (3' UTR) of CDR1 revealed that it was rich in adenylate/uridylate (AU) elements, possessed heterogeneous polyadenylation sites, and had putative consensus sequences for RNA-binding proteins. Swapping of heterologous and chimeric lacZ-CDR1 3' UTR transcriptional reporter fusion constructs did not alter the reporter activity in AS and AR isolates, indicating that cis-acting sequences within the CDR1 3' UTR itself are not sufficient to confer the observed differential mRNA decay. Interestingly, the poly(A) tail of the CDR1 mRNA of AR isolates was approximately 35-50 % hyperadenylated as compared with AS isolates. C. albicans poly(A) polymerase (PAP1), responsible for mRNA adenylation, resides on chromosome 5 in close proximity to the mating type-like (MTL) locus. Two different PAP1 alleles, PAP1-a/PAP1-alpha, were recovered from AS (MTL-a/MTL-alpha), while a single type of PAP1 allele (PAP1-alpha) was recovered from AR isolates (MTL-alpha/MTL-alpha). Among the heterozygous deletions of PAP1-a (Deltapap1-a/PAP1-alpha) and PAP1-alpha (PAP1-a/Deltapap1-alpha), only the former led to relatively enhanced drug resistance, to polyadenylation and to transcript stability of CDR1 in the AS isolate. This suggests a dominant negative role of PAP1-a in CDR1 transcript polyadenylation and stability. Taken together, our study provides the first evidence, to our knowledge, that loss of heterozygosity at the PAP1 locus is linked to hyperadenylation and subsequent increased stability of CDR1 transcripts, thus contributing to enhanced drug resistance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Free-living amoebae serve as hosts for a variety of amoebae-resisting microorganisms, including giant viruses and certain bacteria. The latter include symbiotic bacteria as well as bacteria exhibiting a pathogenic phenotype towards amoebae. Amoebae-resisting bacteria have been shown to be widespread in water and to use the amoebae as a reservoir, a replication niche, a protective armour as well as a training ground to select virulence traits allowing survival in the face of microbicidal effects of macrophages, the first line of defense against invading pathogens. More importantly, amoebae play a significant role as a melting pot for genetic exchanges. These ecological and evolutionary roles of amoebae might also be at play for giant viruses and knowledge derived from the study of amoebae-resisting bacteria is useful for the study and understanding of interactions between amoebae and giant viruses. This is especially important since some genes have spread in all domains of life and the exponential availability of eukaryotic genomes and metagenomic sequences will allow researchers to explore these genetic exchanges in a more comprehensive way, thus completely changing our perception of the evolutionary history of organisms. Thus, a large part of this review is dedicated to report current known gene exchanges between the different amoebae-resisting organisms and between amoebae and the internalized bacteria.