2 resultados para EIF4G1

em Université de Lausanne, Switzerland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose of review: Elucidating the genetic background of Parkinson disease and essential tremor is crucial to understand the pathogenesis and improve diagnostic and therapeutic strategies. Recent findings: A number of approaches have been applied including familial and association studies, and studies of gene expression profiles to identify genes involved in susceptibility to Parkinson disease. These studies have nominated a number of candidate Parkinson disease genes and novel loci including Omi/HtrA2, GIGYF2, FGF20, PDXK, EIF4G1 and PARK16. A recent notable finding has been the confirmation for the role of heterozygous mutations in glucocerebrosidase (GBA) as risk factors for Parkinson disease. Finally, association studies have nominated genetic variation in the leucine-rich repeat and Ig containing 1 gene (LINGO1) as a risk for both Parkinson disease and essential tremor, providing the first genetic evidence of a link between the two conditions. Summary: Although undoubtedly genes remain to be identified, considerable progress has been achieved in the understanding of the genetic basis of Parkinson disease. This same effort is now required for essential tremor. The use of next-generation high-throughput sequencing and genotyping technologies will help pave the way for future insight leading to advances in diagnosis, prevention and cure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The discovery of genes implicated in familial forms of Parkinson's disease (PD) has provided new insights into the molecular events leading to neurodegeneration. Clinically, patients with genetically determined PD can be difficult to distinguish from those with sporadic PD. Monogenic causes include autosomal dominantly (SNCA, LRRK2, VPS35, EIF4G1) as well as recessively (PARK2, PINK1, DJ-1) inherited mutations. Additional recessive forms of parkinsonism present with atypical signs, including very early disease onset, dystonia, dementia and pyramidal signs. New techniques in the search for phenotype-associated genes (next-generation sequencing, genome-wide association studies) have expanded the spectrum of both monogenic PD and variants that alter risk to develop PD. Examples of risk genes include the two lysosomal enzyme coding genes GBA and SMPD1, which are associated with a 5-fold and 9-fold increased risk of PD, respectively. It is hoped that further knowledge of the genetic makeup of PD will allow designing treatments that alter the course of the disease.