45 resultados para Dwarf Galaxy Fornax Distribution Function Action Based
em Université de Lausanne, Switzerland
Resumo:
Unlike fragmental rockfall runout assessments, there are only few robust methods to quantify rock-mass-failure susceptibilities at regional scale. A detailed slope angle analysis of recent Digital Elevation Models (DEM) can be used to detect potential rockfall source areas, thanks to the Slope Angle Distribution procedure. However, this method does not provide any information on block-release frequencies inside identified areas. The present paper adds to the Slope Angle Distribution of cliffs unit its normalized cumulative distribution function. This improvement is assimilated to a quantitative weighting of slope angles, introducing rock-mass-failure susceptibilities inside rockfall source areas previously detected. Then rockfall runout assessment is performed using the GIS- and process-based software Flow-R, providing relative frequencies for runout. Thus, taking into consideration both susceptibility results, this approach can be used to establish, after calibration, hazard and risk maps at regional scale. As an example, a risk analysis of vehicle traffic exposed to rockfalls is performed along the main roads of the Swiss alpine valley of Bagnes.
Resumo:
Objectives: Gentamicin is among the most commonly prescribed antibiotics in newborns, but large interindividual variability in exposure levels exists. Based on a population pharmacokinetic analysis of a cohort of unselected neonates, we aimed to validate current dosing recommendations from a recent reference guideline (Neofax®). Methods: From 3039 concentrations collected in 994 preterm (median gestational age 32.3 weeks, range 24.2-36.5) and 455 term newborns, treated at the University Hospital of Lausanne between 2006 and 2011, a population pharmacokinetic analysis was performed with NONMEM®. Model-based simulations were used to assess the ability of dosing regimens to bring concentrations into targets: trough ≤ 1mg/L and peak ~ 8mg/L. Results: A two-compartment model best characterized gentamicin pharmacokinetics. Model parameters are presented in the table. Body weight, gestational age and postnatal age positively influence clearance, which decreases under dopamine administration. Body weight and gestational age influence the distribution volume. Model based simulations confirm that preterm infants need doses superior to 4 mg/kg, and extended dosage intervals, up to 48 hours for very preterm newborns, whereas most term newborns would achieve adequate exposure under 4 mg/kg q. 24 h. More than 90% of neonates would achieve trough concentrations below 2 mg/L and peaks above 6 mg/L following most recent guidelines. Conclusions: Simulated gentamicin exposure demonstrates good accordance with recent dosing recommendations for target concentration achievement.
Resumo:
Many studies have forecasted the possible impact of climate change on plant distribution using models based on ecological niche theory. In their basic implementation, niche-based models do not constrain predictions by dispersal limitations. Hence, most niche-based modelling studies published so far have assumed dispersal to be either unlimited or null. However, depending on the rate of climatic change, the landscape fragmentation and the dispersal capabilities of individual species, these assumptions are likely to prove inaccurate, leading to under- or overestimation of future species distributions and yielding large uncertainty between these two extremes. As a result, the concepts of "potentially suitable" and "potentially colonisable" habitat are expected to differ significantly. To quantify to what extent these two concepts can differ, we developed MIGCLIM, a model simulating plant dispersal under climate change and landscape fragmentation scenarios. MIGCLIM implements various parameters, such as dispersal distance, increase in reproductive potential over time, barriers to dispersal or long distance dispersal. Several simulations were run for two virtual species in a study area of the western Swiss Alps, by varying dispersal distance and other parameters. Each simulation covered the hundred-year period 2001-2100 and three different IPCC-based temperature warming scenarios were considered. Our results indicate that: (i) using realistic parameter values, the future potential distributions generated using MIGCLIM can differ significantly (up to more than 95% decrease in colonized surface) from those that ignore dispersal; (ii) this divergence increases both with increasing climate warming and over longer time periods; (iii) the uncertainty associated with the warming scenario can be nearly as large as the one related to dispersal parameters; (iv) accounting for dispersal, even roughly, can importantly reduce uncertainty in projections.
Resumo:
The aim of the present study was to investigate the genetic structure of the Valais shrew (Sorex antinorii) by a combined phylogeographical and landscape genetic approach, and thereby to infer the locations of glacial refugia and establish the influence of geographical barriers. We sequenced part of the mitochondrial cytochrome b (cyt b) gene of 179 individuals of S. antinorii sampled across the entire species' range. Six specimens attributed to S. arunchi were included in the analysis. The phylogeographical pattern was assessed by Bayesian molecular phylogenetic reconstruction, population genetic analyses, and a species distribution modelling (SDM)-based hindcasting approach. We also used landscape genetics (including isolation-by-resistance) to infer the determinants of current intra-specific genetic structure. The phylogeographical analysis revealed shallow divergence among haplotypes and no clear substructure within S. antinorii. The starlike structure of the median-joining network is consistent with population expansion from a single refugium, probably located in the Apennines. Long branches observed on the same network also suggest that another refugium may have existed in the north-eastern part of Italy. This result is consistent with SDM, which also suggests several habitable areas for S. antinorii in the Italian peninsula during the LGM. Therefore S. antinorii appears to have occupied disconnected glacial refugia in the Italian peninsula, supporting previous data for other species showing multiple refugia within southern refugial areas. By coupling genetic analyses and SDM, we were able to infer how past climatic suitability contributed to genetic divergence of populations. The genetic differentiation shown in the present study does not support the specific status of S. arunchi.
Resumo:
BACKGROUND: Living in a multisensory world entails the continuous sensory processing of environmental information in order to enact appropriate motor routines. The interaction between our body and our brain is the crucial factor for achieving such sensorimotor integration ability. Several clinical conditions dramatically affect the constant body-brain exchange, but the latest developments in biomedical engineering provide promising solutions for overcoming this communication breakdown. NEW METHOD: The ultimate technological developments succeeded in transforming neuronal electrical activity into computational input for robotic devices, giving birth to the era of the so-called brain-machine interfaces. Combining rehabilitation robotics and experimental neuroscience the rise of brain-machine interfaces into clinical protocols provided the technological solution for bypassing the neural disconnection and restore sensorimotor function. RESULTS: Based on these advances, the recovery of sensorimotor functionality is progressively becoming a concrete reality. However, despite the success of several recent techniques, some open issues still need to be addressed. COMPARISON WITH EXISTING METHOD(S): Typical interventions for sensorimotor deficits include pharmaceutical treatments and manual/robotic assistance in passive movements. These procedures achieve symptoms relief but their applicability to more severe disconnection pathologies is limited (e.g. spinal cord injury or amputation). CONCLUSIONS: Here we review how state-of-the-art solutions in biomedical engineering are continuously increasing expectances in sensorimotor rehabilitation, as well as the current challenges especially with regards to the translation of the signals from brain-machine interfaces into sensory feedback and the incorporation of brain-machine interfaces into daily activities.
Resumo:
When dealing with multi-angular image sequences, problems of reflectance changes due either to illumination and acquisition geometry, or to interactions with the atmosphere, naturally arise. These phenomena interplay with the scene and lead to a modification of the measured radiance: for example, according to the angle of acquisition, tall objects may be seen from top or from the side and different light scatterings may affect the surfaces. This results in shifts in the acquired radiance, that make the problem of multi-angular classification harder and might lead to catastrophic results, since surfaces with the same reflectance return significantly different signals. In this paper, rather than performing atmospheric or bi-directional reflection distribution function (BRDF) correction, a non-linear manifold learning approach is used to align data structures. This method maximizes the similarity between the different acquisitions by deforming their manifold, thus enhancing the transferability of classification models among the images of the sequence.
Resumo:
Aim Species distribution models (SDMs) based on current species ranges underestimate the potential distribution when projected in time and/or space. A multi-temporal model calibration approach has been suggested as an alternative, and we evaluate this using 13,000 years of data. Location Europe. Methods We used fossil-based records of presence for Picea abies, Abies alba and Fagus sylvatica and six climatic variables for the period 13,000 to 1000yr bp. To measure the contribution of each 1000-year time step to the total niche of each species (the niche measured by pooling all the data), we employed a principal components analysis (PCA) calibrated with data over the entire range of possible climates. Then we projected both the total niche and the partial niches from single time frames into the PCA space, and tested if the partial niches were more similar to the total niche than random. Using an ensemble forecasting approach, we calibrated SDMs for each time frame and for the pooled database. We projected each model to current climate and evaluated the results against current pollen data. We also projected all models into the future. Results Niche similarity between the partial and the total-SDMs was almost always statistically significant and increased through time. SDMs calibrated from single time frames gave different results when projected to current climate, providing evidence of a change in the species realized niches through time. Moreover, they predicted limited climate suitability when compared with the total-SDMs. The same results were obtained when projected to future climates. Main conclusions The realized climatic niche of species differed for current and future climates when SDMs were calibrated considering different past climates. Building the niche as an ensemble through time represents a way forward to a better understanding of a species' range and its ecology in a changing climate.
Resumo:
We propose a novel formulation to solve the problem of intra-voxel reconstruction of the fibre orientation distribution function (FOD) in each voxel of the white matter of the brain from diffusion MRI data. The majority of the state-of-the-art methods in the field perform the reconstruction on a voxel-by-voxel level, promoting sparsity of the orientation distribution. Recent methods have proposed a global denoising of the diffusion data using spatial information prior to reconstruction, while others promote spatial regularisation through an additional empirical prior on the diffusion image at each q-space point. Our approach reconciles voxelwise sparsity and spatial regularisation and defines a spatially structured FOD sparsity prior, where the structure originates from the spatial coherence of the fibre orientation between neighbour voxels. The method is shown, through both simulated and real data, to enable accurate FOD reconstruction from a much lower number of q-space samples than the state of the art, typically 15 samples, even for quite adverse noise conditions.
Resumo:
In the Arabidopsis thaliana genome, over 1000 putative genes encoding small, presumably secreted, signalling peptides can be recognized. However, a major obstacle in identifying the function of genes encoding small signalling peptides is the limited number of available loss-of-function mutants. To overcome this, a promising new tool, antagonistic peptide technology, was recently developed. Here, this antagonistic peptide technology was tested on selected CLE peptides and the related IDA peptide and its usefulness in the context of studies of peptide function discussed. Based on the analyses, it was concluded that the antagonistic peptide approach is not the ultimate means to overcome redundancy or lack of loss-of-function lines. However, information collected using antagonistic peptide approaches (in the broad sense) can be very useful, but these approaches do not work in all cases and require a deep insight on the interaction between the ligand and its receptor to be successful. This, as well as peptide ligand structure considerations, should be taken into account before ordering a wide range of synthetic peptide variants and/or generating transgenic plants.
Resumo:
Introduction: In order to improve safety of pedicle screw placement several techniques have been developed. More recently robotically assisted pedicle insertion has been introduced aiming at increasing accuracy. The aim of this study was to compare this new technique with the two main pedicle insertion techniques in our unit namely fluoroscopically assisted vs EMG aided insertion. Material and methods: A total of 382 screws (78 thoracic,304 lumbar) were introduced in 64 patients (m/f = 1.37, equally distributed between insertion technique groups) by a single experienced spinal surgeon. From those, 64 (10 thoracic, 54 lumbar) were introduced in 11 patients using a miniature robotic device based on pre operative CT images under fluoroscopic control. 142 (4 thoracic, 138 lumbar) screws were introduced using lateral fluoroscopy in 27 patients while 176 (64 thoracic, 112 lumbar) screws in 26 patients were inserted using both fluoroscopy and EMG monitoring. There was no difference in the distribution of scoliotic spines between the 3 groups (n = 13). Screw position was assessed by an independent observer on CTs in axial, sagittal and coronal planes using the Rampersaud A to D classification. Data of lumbar and thoracic screws were processed separately as well as data obtained from axial, sagittal and coronal CT planes. Results: Intra- and interobserver reliability of the Rampersaud classification was moderate, (0.35 and 0.45 respectively) being the least good on axial plane. The total number of misplaced screws (C&D grades) was generally low (12 thoracic and 12 lumbar screws). Misplacement rates were same in straight and scoliotic spines. The only difference in misplacement rates was observed on axial and coronal images in the EMG assisted thoracic screw group with a higher proportion of C or D grades (p <0.05) in that group. Recorded compound muscle action potentials (CMAP) values of the inserted screws were 30.4 mA for the robot and 24.9mA for the freehand technique with a CI of 3.8 of the mean difference of 5.5 mA. Discussion: Robotic placement did improve the placement of thoracic screws but not that of lumbar screws possibly because our misplacement rates in general near that of published navigation series. Robotically assisted spine surgery might therefore enhance the safety of screw placement in particular in training settings were different users at various stages of their learning curve are involved in pedicle instrumentation.
Resumo:
A factor limiting preliminary rockfall hazard mapping at regional scale is often the lack of knowledge of potential source areas. Nowadays, high resolution topographic data (LiDAR) can account for realistic landscape details even at large scale. With such fine-scale morphological variability, quantitative geomorphometric analyses become a relevant approach for delineating potential rockfall instabilities. Using digital elevation model (DEM)-based ?slope families? concept over areas of similar lithology and cliffs and screes zones available from the 1:25,000 topographic map, a susceptibility rockfall hazard map was drawn up in the canton of Vaud, Switzerland, in order to provide a relevant hazard overview. Slope surfaces over morphometrically-defined thresholds angles were considered as rockfall source zones. 3D modelling (CONEFALL) was then applied on each of the estimated source zones in order to assess the maximum runout length. Comparison with known events and other rockfall hazard assessments are in good agreement, showing that it is possible to assess rockfall activities over large areas from DEM-based parameters and topographical elements.
Resumo:
The MIGCLIM R package is a function library for the open source R software that enables the implementation of species-specific dispersal constraints into projections of species distribution models under environmental change and/or landscape fragmentation scenarios. The model is based on a cellular automaton and the basic modeling unit is a cell that is inhabited or not. Model parameters include dispersal distance and kernel, long distance dispersal, barriers to dispersal, propagule production potential and habitat invasibility. The MIGCLIM R package has been designed to be highly flexible in the parameter values it accepts, and to offer good compatibility with existing species distribution modeling software. Possible applications include the projection of future species distributions under environmental change conditions and modeling the spread of invasive species.