137 resultados para Dual motor task
em Université de Lausanne, Switzerland
Resumo:
Decline in gait stability has been associated with increased fall risk in older adults. Reliable and clinically feasible methods of gait instability assessment are needed. This study evaluated the relative and absolute reliability and concurrent validity of the testing procedure of the clinical version of the Narrow Path Walking Test (NPWT) under single task (ST) and dual task (DT) conditions. Thirty independent community-dwelling older adults (65-87 years) were tested twice. Participants were instructed to walk within the 6-m narrow path without stepping out. Trial time, number of steps, trial velocity, number of step errors, and number of cognitive task errors were determined. Intraclass correlation coefficients (ICCs) were calculated as indices of agreement, and a graphic approach called "mountain plot" was applied to help interpret the direction and magnitude of disagreements between testing procedures. Smallest detectable change and smallest real difference (SRD) were computed to determine clinically relevant improvement at group and individual levels, respectively. Concurrent validity was assessed using Performance Oriented Mobility Assessment Tool (POMA) and the Short Physical Performance Battery (SPPB). Test-retest agreement (ICC1,2) varied from 0.77 to 0.92 in ST and from 0.78 to 0.92 in DT conditions, with no apparent systematic differences between testing procedures demonstrated by the mountain plot graphs. Smallest detectable change and smallest real change were small for motor task performance and larger for cognitive errors. Significant correlations were observed for trial velocity and trial time with POMA and SPPB. The present results indicate that the NPWT testing procedure is highly reliable and reproducible.
Resumo:
Three-dimensional segmented echo planar imaging (3D-EPI) is a promising approach for high-resolution functional magnetic resonance imaging, as it provides an increased signal-to-noise ratio (SNR) at similar temporal resolution to traditional multislice 2D-EPI readouts. Recently, the 3D-EPI technique has become more frequently used and it is important to better understand its implications for fMRI. In this study, the temporal SNR characteristics of 3D-EPI with varying numbers of segments are studied. It is shown that, in humans, the temporal variance increases with the number of segments used to form the EPI acquisition and that for segmented acquisitions, the maximum available temporal SNR is reduced compared to single shot acquisitions. This reduction with increased segmentation is not found in phantom data and thus likely due to physiological processes. When operating in the thermal noise dominated regime, fMRI experiments with a motor task revealed that the 3D variant outperforms the 2D-EPI in terms of temporal SNR and sensitivity to detect activated brain regions. Thus, the theoretical SNR advantage of a segmented 3D-EPI sequence for fMRI only exists in a low SNR situation. However, other advantages of 3D-EPI, such as the application of parallel imaging techniques in two dimensions and the low specific absorption rate requirements, may encourage the use of the 3D-EPI sequence for fMRI in situations with higher SNR.
Resumo:
Previous research has shown that power increases focus on the main goal when distractor information is present. As a result, high-power people have been described as goal-focused. In real life, one typically wants to pursue multiple goals at the same time. There is a lack of research on how power affects how people deal with situations in which multiple important goals are present. To address this question, 158 participants were primed with high or low power or assigned to a control condition, and were asked to perform a dual-goal task with three difficulty levels. We hypothesized and found that high-power primed people prioritize when confronted with a multiple-goal situation. More specifically, when task demands were relatively low, power had no effect; participants generally pursued multiple goals in parallel. However, when task demands were high, the participants in the high-power condition focused on a single goal whereas participants in the low-power condition continued using a dualtask strategy. This study extends existing power theories and research in the domain of goal pursuit.
Resumo:
BACKGROUND: Fatigue is likely to be an important limiting factor in adolescents with spastic cerebral palsy (CP). AIMS: To determine the effects of walking-induced fatigue on postural control adjustments in adolescents with unilateral CP and their typically developing (TD) peers. METHODS: Ten adolescents with CP (14.2±1.7yr) and 10 age-, weight- and height-matched TD adolescents (14.1±1.9yr) walked for 15min on a treadmill at their preferred walking speed. Before and after this task, voluntary strength capacity of knee extensors (MVC) and postural control were evaluated in 3 conditions: eyes open (EO), eyes closed (EC) and with dual cognitive task (EODT). RESULTS: After walking, MVC decreased significantly in CP (-11%, P<0.05) but not in TD. The CoP area was only significantly increased in CP (90%, 34% and 60% for EO, EC and EODT conditions, respectively). The CoP length was significantly increased in the EO condition in CP and TD (20% and 21%) and was significantly increased in the EODT condition by 18% in CP only. CONCLUSIONS: Unlike TD adolescents, treadmill walking for 15min at their preferred speed lead to significant knee extensor strength losses and impairments in postural control in adolescents with unilateral spastic CP.
Resumo:
This study investigated the spatial, spectral, temporal and functional proprieties of functional brain connections involved in the concurrent execution of unrelated visual perception and working memory tasks. Electroencephalography data was analysed using a novel data-driven approach assessing source coherence at the whole-brain level. Three connections in the beta-band (18-24 Hz) and one in the gamma-band (30-40 Hz) were modulated by dual-task performance. Beta-coherence increased within two dorsofrontal-occipital connections in dual-task conditions compared to the single-task condition, with the highest coherence seen during low working memory load trials. In contrast, beta-coherence in a prefrontal-occipital functional connection and gamma-coherence in an inferior frontal-occipitoparietal connection was not affected by the addition of the second task and only showed elevated coherence under high working memory load. Analysis of coherence as a function of time suggested that the dorsofrontal-occipital beta-connections were relevant to working memory maintenance, while the prefrontal-occipital beta-connection and the inferior frontal-occipitoparietal gamma-connection were involved in top-down control of concurrent visual processing. The fact that increased coherence in the gamma-connection, from low to high working memory load, was negatively correlated with faster reaction time on the perception task supports this interpretation. Together, these results demonstrate that dual-task demands trigger non-linear changes in functional interactions between frontal-executive and occipitoparietal-perceptual cortices.
Resumo:
In the context of an autologous cell transplantation study, a unilateral biopsy of cortical tissue was surgically performed from the right dorsolateral prefrontal cortex (dlPFC) in two intact adult macaque monkeys (dlPFC lesioned group), together with the implantation of a chronic chamber providing access to the left motor cortex. Three other monkeys were subjected to the same chronic chamber implantation, but without dlPFC biopsy (control group). All monkeys were initially trained to perform sequential manual dexterity tasks, requiring precision grip. The motor performance and the prehension's sequence (temporal order to grasp pellets from different spatial locations) were analysed for each hand. Following the surgery, transient and moderate deficits of manual dexterity per se occurred in both groups, indicating that they were not due to the dlPFC lesion (most likely related to the recording chamber implantation and/or general anaesthesia/medication). In contrast, changes of motor habit were observed for the sequential order of grasping in the two monkeys with dlPFC lesion only. The changes were more prominent in the monkey subjected to the largest lesion, supporting the notion of a specific effect of the dlPFC lesion on the motor habit of the monkeys. These observations are reminiscent of previous studies using conditional tasks with delay that have proposed a specialization of the dlPFC for visuo-spatial working memory, except that this is in a different context of "free-will", non-conditional manual dexterity task, without a component of working memory.
Resumo:
There are controversial reports about the effect of aging on movement preparation, and it is unclear to which extent cognitive and/or motor related cerebral processes may be affected. This study examines the age effects on electro-cortical oscillatory patterns during various motor programming tasks, in order to assess potential differences according to the mode of action selection. Twenty elderly (EP, 60-84 years) and 20 young (YP, 20-29 years) participants with normal cognition underwent 3 pre-cued response tasks (S1-S2 paradigm). S1 carried either complete information on response side (Full; stimulus-driven motor preparation), no information (None; general motor alertness), or required free response side selection (Free; internally-driven motor preparation). Electroencephalogram (EEG) was recorded using 64 surface electrodes. Alpha (8-12 Hz) desynchronization (ERD)/synchronization (ERS) and motor-related amplitude asymmetries (MRAA) were analyzed during the S1-S2 interval. Reaction times (RTs) to S2 were slower in EP than YP, and in None than in the other 2 tasks. There was an Age x Task interaction due to increased RTs in Free compared to Full in EP only. Central bilateral and midline activation (alpha ERD) was smaller in EP than YP in None. In Full just before S2, readiness to move was reflected by posterior midline inhibition (alpha ERS) in both groups. In Free, such inhibition was present only in YP. Moreover, MRAA showed motor activity lateralization in both groups in Full, but only in YP in Free. The results indicate reduced recruitment of motor regions for motor alertness in the elderly. They further show less efficient cerebral processes subtending free selection of movement in elders, suggesting reduced capacity for internally-driven action with age.
Resumo:
Manual dexterity, a prerogative of primates, is under the control of the corticospinal (CS) tract. Because 90-95% of CS axons decussate, it is assumed that this control is exerted essentially on the contralateral hand. Consistently, unilateral lesion of the hand representation in the motor cortex is followed by a complete loss of dexterity of the contralesional hand. During the months following lesion, spontaneous recovery of manual dexterity takes place to a highly variable extent across subjects, although largely incomplete. In the present study, we tested the hypothesis that after a significant postlesion period, manual performance in the ipsilesional hand is correlated with the extent of functional recovery in the contralesional hand. To this aim, ten adult macaque monkeys were subjected to permanent unilateral motor cortex lesion. Monkeys' manual performance was assessed for each hand during several months postlesion, using our standard behavioral test (modified Brinkman board task) that provides a quantitative measure of reach and grasp ability. The ipsilesional hand's performance was found to be significantly enhanced over the long term (100-300 days postlesion) in six of ten monkeys, with the six exhibiting the best, though incomplete, recovery of the contralesional hand. There was a statistically significant correlation (r = 0.932; P < 0.001) between performance in the ipsilesional hand after significant postlesion period and the extent of recovery of the contralesional hand. This observation is interpreted in terms of different possible mechanisms of recovery, dependent on the recruitment of motor areas in the lesioned and/or intact hemispheres.
Resumo:
In this study, we compared a selective stop task (transition from a bimanual in-phase to a unimanual index fingers' tapping), with a non-selective stop task (stopping a bimanual in-phase tapping at all), and with a switching task (transition from in-phase to anti-phase bimanual tapping). The aim was twofold: 1) to identify the electro-cortical correlates of selective and non-selective inhibition processes and 2) to investigate which type of inhibition - selective or not - is required when switching between two bimanual motor patterns. The results revealed that all tasks led to enhanced activation (alpha power) of the left sensorimotor and posterior regions which seems to reflect an overall effort to stop the preferred bimanual in-phase tendency. Each task implied specific functional connectivity reorganizations (beta coherence) between cerebral motor areas, probably reflecting engagement in a new unimanual or bimanual movement.
Resumo:
With aging, bimanual movements are performed with increased cerebral activity in frontal and parietal areas. In contrast, motor switching is poorly documented and is expected to engage increasing resources in the elderly. In this study, spontaneous electroencephalographic activity (EEG) was recorded while 39 young participants (YP) and 37 elderly (EP) performed motor transitions from unimanual tapping to symmetric bimanual tapping (= Activation), and opposite (= Inhibition). We measured the delay of switching using the mean and standard deviation of transition time (meanTT and sdTT). Task-related power (TRPow) in alpha frequency band (8-12Hz) was used to measure electro-cortical changes, negative values corresponding to increased cerebral activity. A balance index (BI) was computed between frontal and parietal regions, values non-significantly different from "zero" representing a comparable level of cerebral activity in these regions. The results reveal higher sdTT 1) in EP compared to YP in both transitions, 2) in Activation compared to Inhibition in both groups. TRPow tends to reach greater negative values (p=0.052) in EP compared to YP in both tapping modes and both motor transitions. Furthermore, the results show more negative TRPow 1) in both motor transitions compared to the tapping movements and 2) in frontal region for YP compared to EP during Inhibition only. BI values differ significantly from "zero" for YP in Inhibition only. In conclusion, motor transitions are more variable and tend to be resource-consuming in the elderly. Moreover, the cerebral activity spreading in EP characterized by similar level of activity between frontal and parietal regions suggest reduced capacity to recruit specialized neural mechanisms during motor inhibition.
Resumo:
Motor inhibitory control plays a central role in adaptive behaviors during the entire lifespan. Inhibitory motor control refers to the ability to stop all (global) or a part (selective) of a planned or ongoing motor action. Although the neural processing underlying the global inhibitory control has received much attention from cognitive neuroscientists, brain modulations that occur during selective inhibitory motor control remain unknown. The aim of the present thesis is to investigate the spatio-temporal brain processes of selective inhibitory motor control in young and old adults using high-density electroencephalography. In the first part, we focus on early (preparatory period) spatio-temporal brain processes involved in selective and global inhibitory control in young (study I) and old adults (study II) using a modified Go/No-go task. In study I, we distinguished global from selective inhibition in the early attentional stage of inhibitory control and provided neurophysiological evidence in favor of the combination model. In study II, we showed an under-recruitment of neural resources associated with preservation of performance in old adults during selective inhibition, suggesting efficient cerebral and behavioral adaptations to environmental changes. In the second part, we investigate beta oscillations in the late (post-execution period) spatio-temporal brain processes of selective inhibition during a motor Switching task (i.e., tapping movement from bimanual to unimanual) in young (study III) and old adults (study IV). In study III, we identified concomitant beta synchronization related (i) to sensory reafference processes, which enabled the stabilization of the movement that was perturbed after switching, and (ii) to active inhibition processes that prevented movement of the stopping hand. In study IV, we demonstrated a larger beta synchronization in frontal and parietal regions in old adults compared to young adults, suggesting age-related brain modulations in active inhibition processes. Apart from contributing to a basic understanding of the electrocortical dynamics underlying inhibitory motor control, the findings of the present studies contribute to knowledge regarding the further establishment of specific trainings with aging. -- Le contrôle de l'inhibition motrice joue un rôle central dans les adaptations comportementales quel que soit l'âge. L'inhibition motrice se réfère à la capacité à arrêter entièrement (globale) ou en partie (sélective) une action motrice planifiée ou en cours. Bien que les processus neuronaux sous-jacents de l'inhibition globale aient suscité un grand intérêt auprès des neurosciences cognitives, les modulations cérébrales dans le contrôle de l'inhibition motrice sélective sont encore peu connues. Le but de cette thèse est d'étudier les processus cérébraux spatio-temporels du contrôle de l'inhibition motrice sélective chez les adultes jeunes et âgés en utilisant l'électroencéphalogramme à haute densité. Dans la première partie, nous comparons les processus cérébraux spatio-temporels précoces (préparation motrice) de l'inhibition sélective et globale chez des adultes jeunes (étude I) et âgés (étude II) en utilisant une tâche Go/No-go modifiée. Dans l'étude I, nous avons distingué l'inhibition globale et sélective au niveau des processus attentionnels précoces du contrôle de l'inhibition et nous avons apporté des preuves neurophysiologiques de l'existence d'un modèle de combinaison. Dans l'étude II, nous avons montré une sous-activation neuronale associée à un maintien de la performance dans l'inhibition sélective chez les adultes âgés, suggérant des adaptations cérébrales et comportementales aux contraintes environnementales. Dans la seconde partie, nous examinons les processus cérébraux spatio-temporels tardifs (post-exécution motrice) de l'inhibition sélective pendant une tâche de Switching (tapping bimanuel vers un tapping unimanuel) chez des adultes jeunes (étude III) et âgés (étude IV). Dans l'étude III, nous avons distingué des synchronisations beta liées (i) au traitement des réafférences sensorielles permettant de stabiliser le mouvement perturbé après le switching, et (ii) aux processus d'inhibition active afin d'empêcher les mouvements de la main arrêtée. Dans l'étude IV, cette synchronisation beta était plus forte dans les régions frontales et pariétales chez les âgés par rapport aux jeunes adultes suggérant des modulations cérébrales de l'inhibition active avec l'âge. Outre la contribution fondamentale sur la compréhension des dynamiques électrocorticales dans le contrôle de l'inhibition motrice, les résultats de ces études contribuent à développer les connaissances pour la mise en place de programmes d'entraînements adaptés aux personnes âgées.