6 resultados para Drying and rewetting
em Université de Lausanne, Switzerland
Resumo:
The fatty acids from cocoa butters of different origins, varieties, and suppliers and a number of cocoa butter equivalents (Illexao 30-61, Illexao 30-71, Illexao 30-96, Choclin, Coberine, Chocosine-Illipe, Chocosine-Shea, Shokao, Akomax, Akonord, and Ertina) were investigated by bulk stable carbon isotope analysis and compound specific isotope analysis. The interpretation is based on principal component analysis combining the fatty acid concentrations and the bulk and molecular isotopic data. The scatterplot of the two first principal components allowed detection of the addition of vegetable fats to cocoa butters. Enrichment in heavy carbon isotope (C-13) of the bulk cocoa butter and of the individual fatty acids is related to mixing with other vegetable fats and possibly to thermally or oxidatively induced degradation during processing (e.g., drying and roasting of the cocoa beans or deodorization of the pressed fat) or storage. The feasibility of the analytical approach for authenticity assessment is discussed.
Resumo:
The regulation of gene expression is crucial for an organism's development and response to stress, and an understanding of the evolution of gene expression is of fundamental importance to basic and applied biology. To improve this understanding, we conducted expression quantitative trait locus (eQTL) mapping in the Tsu-1 (Tsushima, Japan) × Kas-1 (Kashmir, India) recombinant inbred line population of Arabidopsis thaliana across soil drying treatments. We then used genome resequencing data to evaluate whether genomic features (promoter polymorphism, recombination rate, gene length, and gene density) are associated with genes responding to the environment (E) or with genes with genetic variation (G) in gene expression in the form of eQTLs. We identified thousands of genes that responded to soil drying and hundreds of main-effect eQTLs. However, we identified very few statistically significant eQTLs that interacted with the soil drying treatment (GxE eQTL). Analysis of genome resequencing data revealed associations of several genomic features with G and E genes. In general, E genes had lower promoter diversity and local recombination rates. By contrast, genes with eQTLs (G) had significantly greater promoter diversity and were located in genomic regions with higher recombination. These results suggest that genomic architecture may play an important a role in the evolution of gene expression.
Resumo:
Life cycle analyses (LCA) approaches require adaptation to reflect the increasing delocalization of production to emerging countries. This work addresses this challenge by establishing a country-level, spatially explicit life cycle inventory (LCI). This study comprises three separate dimensions. The first dimension is spatial: processes and emissions are allocated to the country in which they take place and modeled to take into account local factors. Emerging economies China and India are the location of production, the consumption occurs in Germany, an Organisation for Economic Cooperation and Development country. The second dimension is the product level: we consider two distinct textile garments, a cotton T-shirt and a polyester jacket, in order to highlight potential differences in the production and use phases. The third dimension is the inventory composition: we track CO2, SO2, NO (x), and particulates, four major atmospheric pollutants, as well as energy use. This third dimension enriches the analysis of the spatial differentiation (first dimension) and distinct products (second dimension). We describe the textile production and use processes and define a functional unit for a garment. We then model important processes using a hierarchy of preferential data sources. We place special emphasis on the modeling of the principal local energy processes: electricity and transport in emerging countries. The spatially explicit inventory is disaggregated by country of location of the emissions and analyzed according to the dimensions of the study: location, product, and pollutant. The inventory shows striking differences between the two products considered as well as between the different pollutants considered. For the T-shirt, over 70% of the energy use and CO2 emissions occur in the consuming country, whereas for the jacket, more than 70% occur in the producing country. This reversal of proportions is due to differences in the use phase of the garments. For SO2, in contrast, over two thirds of the emissions occur in the country of production for both T-shirt and jacket. The difference in emission patterns between CO2 and SO2 is due to local electricity processes, justifying our emphasis on local energy infrastructure. The complexity of considering differences in location, product, and pollutant is rewarded by a much richer understanding of a global production-consumption chain. The inclusion of two different products in the LCI highlights the importance of the definition of a product's functional unit in the analysis and implications of results. Several use-phase scenarios demonstrate the importance of consumer behavior over equipment efficiency. The spatial emission patterns of the different pollutants allow us to understand the role of various energy infrastructure elements. The emission patterns furthermore inform the debate on the Environmental Kuznets Curve, which applies only to pollutants which can be easily filtered and does not take into account the effects of production displacement. We also discuss the appropriateness and limitations of applying the LCA methodology in a global context, especially in developing countries. Our spatial LCI method yields important insights in the quantity and pattern of emissions due to different product life cycle stages, dependent on the local technology, emphasizing the importance of consumer behavior. From a life cycle perspective, consumer education promoting air-drying and cool washing is more important than efficient appliances. Spatial LCI with country-specific data is a promising method, necessary for the challenges of globalized production-consumption chains. We recommend inventory reporting of final energy forms, such as electricity, and modular LCA databases, which would allow the easy modification of underlying energy infrastructure.
Resumo:
Accurate estimates of water losses by evaporation from shallow water tables are important for hydrological, agricultural, and climatic purposes. An experiment was conducted in a weighing lysimeter to characterize the diurnal dynamics of evaporation under natural conditions. Sampling revealed a completely dry surface sand layer after 5 days of evaporation. Its thickness was <1 cm early in the morning, increasing to reach 4?5 cm in the evening. This evidence points out fundamental limitations of the approaches that assume hydraulic connectivity from the water table up to the surface, as well as those that suppose monotonic drying when unsteady conditions prevail. The computed vapor phase diffusion rates from the apparent drying front based on Fick's law failed to reproduce the measured cumulative evaporation during the sampling day. We propose that two processes rule natural evaporation resulting from daily fluctuations of climatic variables: (i) evaporation of water, stored during nighttime due to redistribution and vapor condensation, directly into the atmosphere from the soil surface during the early morning hours, that could be simulated using a mass transfer approach and (ii) subsurface evaporation limited by Fickian diffusion, afterward. For the conditions prevailing during the sampling day, the amount of water stored at the vicinity of the soil surface was 0.3 mm and was depleted before 11:00. Combining evaporation from the surface before 11:00 and subsurface evaporation limited by Fickian diffusion after that time, the agreement between the estimated and measured cumulative evaporation was significantly improved.
Resumo:
BACKGROUND: Hepcidin, a 25 amino acid peptide, plays an important role in iron homeostasis. Some hepcidin truncated peptides have antibiotic effects. RESULTS: A new analytical method for hepcidin determination in human plasma using LC-HRMS operating in full-scan acquisition mode has been validated. The extraction consists of protein precipitation and a drying reconstitution step; a 2.1 x 50 mm (idxL) C18 analytical column was used. Detection specificity, stability, accuracy, precision and recoveries were determined. The LOQ/LOD were 0.25/0.1 nM, respectively. More than 600 injections of plasma extracts were performed, allowing evaluation of the assay robustness. Hepcidin-20, hepcidin-22 and a new isoform, hepcidin-24, were detected in patients. CONCLUSION: The data underscore the usefulness of LC-HRMS for in-depth investigations related to hepcidin levels and pathways.
Resumo:
OBJECTIVES: Many nanomaterials (materials with structures smaller than 100 nm) have chemical, physical and bioactive characteristics of interest for novel applications. Considerable research efforts have been launched in this field. This study aimed to study exposure scenarios commonly encountered in research settings. METHODS: We studied one of the leading Swiss universities and first identified all research units dealing with nanomaterials. After a preliminary evaluation of quantities and process types used, a detailed analysis was conducted in units where more than a few micrograms were used per week. RESULTS: In the investigated laboratories, background levels were usually low and in the range of a few thousand particles per cubic centimeter. Powder applications resulted in concentrations of 10,000 to 100,000 particles/cm(3) when measured inside fume hoods, but there were no or mostly minimal increases in the breathing zone of researchers. Mostly low exposures were observed for activities involving liquid applications. However, centrifugation and lyophilization of nanoparticle-containing solutions resulted in high particle number levels (up to 300,000 particles/cm(3)) in work spaces where researchers did not always wear respiratory protection. No significant increases were found for processes involving nanoparticles bound to surfaces, nor were they found in laboratories that were visualizing properties and structure of small amounts of nanomaterials. CONCLUSIONS: Research activities in modern laboratories equipped with control techniques were associated with minimal releases of nanomaterials into the working space. However, the focus should not only be on processes involving nanopowders but should also be on processes involving nanoparticle-containing liquids, especially if the work involves physical agitation, aerosolization or drying of the liquids.