2 resultados para Dry weight
em Université de Lausanne, Switzerland
Resumo:
Polyhydroxyalkanoate (PHA) is a family of polymers composed primarily of R-3-hydroxyalkanoic acids. These polymers have properties of biodegradable thermoplastics and elastomers. Medium-chain-length PHAs (MCL-PHAs) are synthesized in bacteria by using intermediates of the beta-oxidation of alkanoic acids. To assess the feasibility of producing MCL-PHAs in plants, Arabidopsis thaliana was transformed with the PhaC1 synthase from Pseudomonas aeruginosa modified for peroxisome targeting by addition of the carboxyl 34 amino acids from the Brassica napus isocitrate lyase. Immunocytochemistry demonstrated that the modified PHA synthase was appropriately targeted to leaf-type peroxisomes in light-grown plants and glyoxysomes in dark-grown plants. Plants expressing the PHA synthase accumulated electron-lucent inclusions in the glyoxysomes and leaf-type peroxisomes, as well as in the vacuole. These inclusions were similar to bacterial PHA inclusions. Analysis of plant extracts by GC and mass spectrometry demonstrated the presence of MCL-PHA in transgenic plants to approximately 4 mg per g of dry weight. The plant PHA contained saturated and unsaturated 3-hydroxyalkanoic acids ranging from six to 16 carbons with 41% of the monomers being 3-hydroxyoctanoic acid and 3-hydroxyoctenoic acid. These results indicate that the beta-oxidation of plant fatty acids can generate a broad range of R-3-hydroxyacyl-CoA intermediates that can be used to synthesize MCL-PHAs.
Resumo:
Introduction. Selective embolization of the left-gastric artery (LGA) reduces levels of ghrelin and achieves significant short-term weight loss. However, embolization of the LGA would prevent the performance of bariatric procedures because the high-risk leakage area (gastroesophageal junction [GEJ]) would be devascularized. Aim. To assess an alternative vascular approach to the modulation of ghrelin levels and generate a blood flow manipulation, consequently increasing the vascular supply to the GEJ. Materials and methods. A total of 6 pigs underwent a laparoscopic clipping of the left gastroepiploic artery. Preoperative and postoperative CT angiographies were performed. Ghrelin levels were assessed perioperatively and then once per week for 3 weeks. Reactive oxygen species (ROS; expressed as ROS/mg of dry weight [DW]), mitochondria respiratory rate, and capillary lactates were assessed before and 1 hour after clipping (T0 and T1) and after 3 weeks of survival (T2), on seromuscular biopsies. A celiac trunk angiography was performed at 3 weeks. Results. Mean (±standard deviation) ghrelin levels were significantly reduced 1 hour after clipping (1902 ± 307.8 pg/mL vs 1084 ± 680.0; P = .04) and at 3 weeks (954.5 ± 473.2 pg/mL; P = .01). Mean ROS levels were statistically significantly decreased at the cardia at T2 when compared with T0 (0.018 ± 0.006 mg/DW vs 0.02957 ± 0.0096 mg/DW; P = .01) and T1 (0.0376 ± 0.008mg/DW; P = .007). Capillary lactates were significantly decreased after 3 weeks, and the mitochondria respiratory rate remained constant over time at the cardia and pylorus, showing significant regional differences. Conclusions. Manipulation of the gastric flow targeting the gastroepiploic arcade induces ghrelin reduction. An endovascular approach is currently under evaluation.