385 resultados para Drug Companies
em Université de Lausanne, Switzerland
Resumo:
Drug development has improved over recent decades, with refinements in analytical techniques, population pharmacokinetic-pharmacodynamic (PK-PD) modelling and simulation, and new biomarkers of efficacy and tolerability. Yet this progress has not yielded improvements in individualization of treatment and monitoring, owing to various obstacles: monitoring is complex and demanding, many monitoring procedures have been instituted without critical assessment of the underlying evidence and rationale, controlled clinical trials are sparse, monitoring procedures are poorly validated and both drug manufacturers and regulatory authorities take insufficient account of the importance of monitoring. Drug concentration and effect data should be increasingly collected, analyzed, aggregated and disseminated in forms suitable for prescribers, along with efficient monitoring tools and evidence-based recommendations regarding their best use. PK-PD observations should be collected for both novel and established critical drugs and applied to observational data, in order to establish whether monitoring would be suitable. Methods for aggregating PK-PD data in systematic reviews should be devised. Observational and intervention studies to evaluate monitoring procedures are needed. Miniaturized monitoring tests for delivery at the point of care should be developed and harnessed to closed-loop regulated drug delivery systems. Intelligent devices would enable unprecedented precision in the application of critical treatments, i.e. those with life-saving efficacy, narrow therapeutic margins and high interpatient variability. Pharmaceutical companies, regulatory agencies and academic clinical pharmacologists share the responsibility of leading such developments, in order to ensure that patients obtain the greatest benefit and suffer the least harm from their medicines.
Resumo:
Molecular shape has long been known to be an important property for the process of molecular recognition. Previous studies postulated the existence of a drug-like shape space that could be used to artificially bias the composition of screening libraries, with the aim to increase the chance of success in Hit Identification. In this work, it was analysed to which extend this assumption holds true. Normalized Principal Moments of Inertia Ratios (NPRs) have been used to describe the molecular shape of small molecules. It was investigated, whether active molecules of diverse targets are located in preferred subspaces of the NPR shape space. Results illustrated a significantly stronger clustering than could be expected by chance, with parts of the space unlikely to be occupied by active compounds. Furthermore, a strong enrichment of elongated, rather flat shapes could be observed, while globular compounds were highly underrepresented. This was confirmed for a wide range of small molecule datasets from different origins. Active compounds exhibited a high overlap in their shape distributions across different targets, making a purely shape based discrimination very difficult. An additional perspective was provided by comparing the shapes of protein binding pockets with those of their respective ligands. Although more globular than their ligands, it was observed that binding sites shapes exhibited a similarly skewed distribution in shape space: spherical shapes were highly underrepresented. This was different for unoccupied binding pockets of smaller size. These were on the contrary identified to possess a more globular shape. The relation between shape complementarity and exhibited bioactivity was analysed; a moderate correlation between bioactivity and parameters including pocket coverage, distance in shape space, and others could be identified, which reflects the importance of shape complementarity. However, this also suggests that other aspects are of relevance for molecular recognition. A subsequent analysis assessed if and how shape and volume information retrieved from pocket or respective reference ligands could be used as a pre-filter in a virtual screening approach. ln Lead Optimization compounds need to get optimized with respect to a variety of pararneters. Here, the availability of past success stories is very valuable, as they can guide medicinal chemists during their analogue synthesis plans. However, although of tremendous interest for the public domain, so far only large corporations had the ability to mine historical knowledge in their proprietary databases. With the aim to provide such information, the SwissBioisostere database was developed and released during this thesis. This database contains information on 21,293,355 performed substructural exchanges, corresponding to 5,586,462 unique replacements that have been measured in 35,039 assays against 1,948 molecular targets representing 30 target classes, and on their impact on bioactivity . A user-friendly interface was developed that provides facile access to these data and is accessible at http//www.swissbioisostere.ch. The ChEMBL database was used as primary data source of bioactivity information. Matched molecular pairs have been identified in the extracted and cleaned data. Success-based scores were developed and integrated into the database to allow re-ranking of proposed replacements by their past outcomes. It was analysed to which degree these scores correlate with chemical similarity of the underlying fragments. An unexpectedly weak relationship was detected and further investigated. Use cases of this database were envisioned, and functionalities implemented accordingly: replacement outcomes are aggregatable at the assay level, and it was shawn that an aggregation at the target or target class level could also be performed, but should be accompanied by a careful case-by-case assessment. It was furthermore observed that replacement success depends on the activity of the starting compound A within a matched molecular pair A-B. With increasing potency the probability to lose bioactivity through any substructural exchange was significantly higher than in low affine binders. A potential existence of a publication bias could be refuted. Furthermore, often performed medicinal chemistry strategies for structure-activity-relationship exploration were analysed using the acquired data. Finally, data originating from pharmaceutical companies were compared with those reported in the literature. It could be seen that industrial medicinal chemistry can access replacement information not available in the public domain. In contrast, a large amount of often-performed replacements within companies could also be identified in literature data. Preferences for particular replacements differed between these two sources. The value of combining different endpoints in an evaluation of molecular replacements was investigated. The performed studies highlighted furthermore that there seem to exist no universal substructural replacement that always retains bioactivity irrespective of the biological environment. A generalization of bioisosteric replacements seems therefore not possible. - La forme tridimensionnelle des molécules a depuis longtemps été reconnue comme une propriété importante pour le processus de reconnaissance moléculaire. Des études antérieures ont postulé que les médicaments occupent préférentiellement un sous-ensemble de l'espace des formes des molécules. Ce sous-ensemble pourrait être utilisé pour biaiser la composition de chimiothèques à cribler, dans le but d'augmenter les chances d'identifier des Hits. L'analyse et la validation de cette assertion fait l'objet de cette première partie. Les Ratios de Moments Principaux d'Inertie Normalisés (RPN) ont été utilisés pour décrire la forme tridimensionnelle de petites molécules de type médicament. Il a été étudié si les molécules actives sur des cibles différentes se co-localisaient dans des sous-espaces privilégiés de l'espace des formes. Les résultats montrent des regroupements de molécules incompatibles avec une répartition aléatoire, avec certaines parties de l'espace peu susceptibles d'être occupées par des composés actifs. Par ailleurs, un fort enrichissement en formes allongées et plutôt plates a pu être observé, tandis que les composés globulaires étaient fortement sous-représentés. Cela a été confirmé pour un large ensemble de compilations de molécules d'origines différentes. Les distributions de forme des molécules actives sur des cibles différentes se recoupent largement, rendant une discrimination fondée uniquement sur la forme très difficile. Une perspective supplémentaire a été ajoutée par la comparaison des formes des ligands avec celles de leurs sites de liaison (poches) dans leurs protéines respectives. Bien que plus globulaires que leurs ligands, il a été observé que les formes des poches présentent une distribution dans l'espace des formes avec le même type d'asymétrie que celle observée pour les ligands: les formes sphériques sont fortement sous représentées. Un résultat différent a été obtenu pour les poches de plus petite taille et cristallisées sans ligand: elles possédaient une forme plus globulaire. La relation entre complémentarité de forme et bioactivité a été également analysée; une corrélation modérée entre bioactivité et des paramètres tels que remplissage de poche, distance dans l'espace des formes, ainsi que d'autres, a pu être identifiée. Ceci reflète l'importance de la complémentarité des formes, mais aussi l'implication d'autres facteurs. Une analyse ultérieure a évalué si et comment la forme et le volume d'une poche ou de ses ligands de référence pouvaient être utilisés comme un pré-filtre dans une approche de criblage virtuel. Durant l'optimisation d'un Lead, de nombreux paramètres doivent être optimisés simultanément. Dans ce contexte, la disponibilité d'exemples d'optimisations réussies est précieuse, car ils peuvent orienter les chimistes médicinaux dans leurs plans de synthèse par analogie. Cependant, bien que d'un extrême intérêt pour les chercheurs dans le domaine public, seules les grandes sociétés pharmaceutiques avaient jusqu'à présent la capacité d'exploiter de telles connaissances au sein de leurs bases de données internes. Dans le but de remédier à cette limitation, la base de données SwissBioisostere a été élaborée et publiée dans le domaine public au cours de cette thèse. Cette base de données contient des informations sur 21 293 355 échanges sous-structuraux observés, correspondant à 5 586 462 remplacements uniques mesurés dans 35 039 tests contre 1948 cibles représentant 30 familles, ainsi que sur leur impact sur la bioactivité. Une interface a été développée pour permettre un accès facile à ces données, accessible à http:/ /www.swissbioisostere.ch. La base de données ChEMBL a été utilisée comme source de données de bioactivité. Une version modifiée de l'algorithme de Hussain et Rea a été implémentée pour identifier les Matched Molecular Pairs (MMP) dans les données préparées au préalable. Des scores de succès ont été développés et intégrés dans la base de données pour permettre un reclassement des remplacements proposés selon leurs résultats précédemment observés. La corrélation entre ces scores et la similarité chimique des fragments correspondants a été étudiée. Une corrélation plus faible qu'attendue a été détectée et analysée. Différents cas d'utilisation de cette base de données ont été envisagés, et les fonctionnalités correspondantes implémentées: l'agrégation des résultats de remplacement est effectuée au niveau de chaque test, et il a été montré qu'elle pourrait également être effectuée au niveau de la cible ou de la classe de cible, sous réserve d'une analyse au cas par cas. Il a en outre été constaté que le succès d'un remplacement dépend de l'activité du composé A au sein d'une paire A-B. Il a été montré que la probabilité de perdre la bioactivité à la suite d'un remplacement moléculaire quelconque est plus importante au sein des molécules les plus actives que chez les molécules de plus faible activité. L'existence potentielle d'un biais lié au processus de publication par articles a pu être réfutée. En outre, les stratégies fréquentes de chimie médicinale pour l'exploration des relations structure-activité ont été analysées à l'aide des données acquises. Enfin, les données provenant des compagnies pharmaceutiques ont été comparées à celles reportées dans la littérature. Il a pu être constaté que les chimistes médicinaux dans l'industrie peuvent accéder à des remplacements qui ne sont pas disponibles dans le domaine public. Par contre, un grand nombre de remplacements fréquemment observés dans les données de l'industrie ont également pu être identifiés dans les données de la littérature. Les préférences pour certains remplacements particuliers diffèrent entre ces deux sources. L'intérêt d'évaluer les remplacements moléculaires simultanément selon plusieurs paramètres (bioactivité et stabilité métabolique par ex.) a aussi été étudié. Les études réalisées ont souligné qu'il semble n'exister aucun remplacement sous-structural universel qui conserve toujours la bioactivité quel que soit le contexte biologique. Une généralisation des remplacements bioisostériques ne semble donc pas possible.
Resumo:
For many drugs, finding the balance between efficacy and toxicity requires monitoring their concentrations in the patient's blood. Quantifying drug levels at the bedside or at home would have advantages in terms of therapeutic outcome and convenience, but current techniques require the setting of a diagnostic laboratory. We have developed semisynthetic bioluminescent sensors that permit precise measurements of drug concentrations in patient samples by spotting minimal volumes on paper and recording the signal using a simple point-and-shoot camera. Our sensors have a modular design consisting of a protein-based and a synthetic part and can be engineered to selectively recognize a wide range of drugs, including immunosuppressants, antiepileptics, anticancer agents and antiarrhythmics. This low-cost point-of-care method could make therapies safer, increase the convenience of doctors and patients and make therapeutic drug monitoring available in regions with poor infrastructure.
Resumo:
Background. Accurate quantification of the prevalence of human immunodeficiency virus type 1 (HIV-1) drug resistance in patients who are receiving antiretroviral therapy (ART) is difficult, and results from previous studies vary. We attempted to assess the prevalence and dynamics of resistance in a highly representative patient cohort from Switzerland. Methods. On the basis of genotypic resistance test results and clinical data, we grouped patients according to their risk of harboring resistant viruses. Estimates of resistance prevalence were calculated on the basis of either the proportion of individuals with a virologic failure or confirmed drug resistance (lower estimate) or the frequency-weighted average of risk group-specific probabilities for the presence of drug resistance mutations (upper estimate). Results. Lower and upper estimates of drug resistance prevalence in 8064 ART-exposed patients were 50% and 57% in 1999 and 37% and 45% in 2007, respectively. This decrease was driven by 2 mechanisms: loss to follow-up or death of high-risk patients exposed to mono- or dual-nucleoside reverse-transcriptase inhibitor therapy (lower estimates range from 72% to 75%) and continued enrollment of low-risk patients who were taking combination ART containing boosted protease inhibitors or nonnucleoside reverse-transcriptase inhibitors as first-line therapy (lower estimates range from 7% to 12%). A subset of 4184 participants (52%) had 1 study visit per year during 2002-2007. In this subset, lower and upper estimates increased from 45% to 49% and from 52% to 55%, respectively. Yearly increases in prevalence were becoming smaller in later years. Conclusions. Contrary to earlier predictions, in situations of free access to drugs, close monitoring, and rapid introduction of new potent therapies, the emergence of drug-resistant viruses can be minimized at the population level. Moreover, this study demonstrates the necessity of interpreting time trends in the context of evolving cohort populations.
Resumo:
At an intermediate or advanced stage, i.e. stage B or C, based on the Barcelona Clinic Liver Cancer classification of hepatocellular carcinoma (HCC), transarterial chemoembolization (TACE) may be offered as a treatment of palliative intent. We report the case of a patient suffering from acute respiratory distress syndrome after TACE with drug-eluting beads loaded with doxorubicin for HCC. To our knowledge, this is the first case described where a bronchoalveolar lavage was performed, and where significant levels of alveolar eosinophilia and neutrophilia were evident, attributed to a pulmonary toxicity of doxorubicin following liver chemoembolization. © 2014 S. Karger AG, Basel.
Resumo:
Salvia divinorum Epling & Jativa is an hallucinogenic mint traditionally used for curing and divination by the Mazatec Indians of Oaxaca, Mexico. Young people from Mexican cities were reported to smoke dried leaves of S. divinorum as a marijuana substitute. Recently, two S. divinorum specimens were seized in a large-scale illicit in-door and out-door hemp plantation. Salvinorin A also called divinorin A, a trans-neoclerodane diterpene, was identified in several organic solvent extracts by gas chromatography-mass spectrometry. The botanical identity of the plant was confirmed by comparing it to an authentic herbarium specimen. More plants were then discovered in Swiss horticulturists greenhouses. All these data taken together suggest that many attempts exist in Switzerland to use S. divinorum as a recreational drug. This phenomenon may be enhanced because neither the magic mint, nor its active compound are banned substances listed in the Swiss narcotic law.
Resumo:
Introduction: Drug prescription is difficult in ICUs as prescribers are many, drugs expensive and decisions complex. In our ICU, specialist clinicians (SC) are entitled to prescribe a list of specific drugs, negotiated with intensive care physicians (ICP). The objective of this investigation was to assess the 5-year evolution of quantity and costs of drug prescription in our adult ICU and identify the relative costs generated by ICP or SC. Methods: Quantities and costs of drugs delivered on a quarterly basis to the adult ICU of our hospital between 2004 and 2008 were extracted from the pharmacy database by ATC code, an international five-level classification system. Within each ATC first level, drugs with either high level of consumption, high costs or large variations in quantities and costs were singled out and split by type of prescriber, ICP or SC. Cost figures used were drug purchase prices by the hospital pharmacy. Results: Over the 5-year period, both quantities and costs of drugs increased, following a nonsteady, nonparallel pattern. Four ATC codes accounted for 80% of both quantities and costs, with ATC code B (blood and haematopoietic organs) amounting to 63% in quantities and 41% in costs, followed by ATC code J (systemic anti-infective, 20% of the costs), ATC code N (nervous system, 11% of the costs) and ATC code C (cardiovascular system, 8% of the costs). Prescription by SC amounted to 1% in drug quantities, but 19% in drug costs. The rate of increase in quantities and costs was seven times larger for ICP than for SC (Figure 1 overleaf ). Some peak values in costs and quantities were related to a very limited number of patients. Conclusions: A 5-year increase in quantities and costs of drug prescription in an ICU is a matter of concern. Rather unexpectedly, total costs and cost increases were generated mainly by ICP. A careful follow-up is necessary to try influencing this evolution through an institutional policy co-opted by all professional categories involved in the process.
Resumo:
Therapeutic drug monitoring (TDM) aims to optimize treatments by individualizing dosage regimens based on the measurement of blood concentrations. Dosage individualization to maintain concentrations within a target range requires pharmacokinetic and clinical capabilities. Bayesian calculations currently represent the gold standard TDM approach but require computation assistance. In recent decades computer programs have been developed to assist clinicians in this assignment. The aim of this survey was to assess and compare computer tools designed to support TDM clinical activities. The literature and the Internet were searched to identify software. All programs were tested on personal computers. Each program was scored against a standardized grid covering pharmacokinetic relevance, user friendliness, computing aspects, interfacing and storage. A weighting factor was applied to each criterion of the grid to account for its relative importance. To assess the robustness of the software, six representative clinical vignettes were processed through each of them. Altogether, 12 software tools were identified, tested and ranked, representing a comprehensive review of the available software. Numbers of drugs handled by the software vary widely (from two to 180), and eight programs offer users the possibility of adding new drug models based on population pharmacokinetic analyses. Bayesian computation to predict dosage adaptation from blood concentration (a posteriori adjustment) is performed by ten tools, while nine are also able to propose a priori dosage regimens, based only on individual patient covariates such as age, sex and bodyweight. Among those applying Bayesian calculation, MM-USC*PACK© uses the non-parametric approach. The top two programs emerging from this benchmark were MwPharm© and TCIWorks. Most other programs evaluated had good potential while being less sophisticated or less user friendly. Programs vary in complexity and might not fit all healthcare settings. Each software tool must therefore be regarded with respect to the individual needs of hospitals or clinicians. Programs should be easy and fast for routine activities, including for non-experienced users. Computer-assisted TDM is gaining growing interest and should further improve, especially in terms of information system interfacing, user friendliness, data storage capability and report generation.
Resumo:
Clinical responses to anticancer therapies are often restricted to a subset of patients. In some cases, mutated cancer genes are potent biomarkers for responses to targeted agents. Here, to uncover new biomarkers of sensitivity and resistance to cancer therapeutics, we screened a panel of several hundred cancer cell lines--which represent much of the tissue-type and genetic diversity of human cancers--with 130 drugs under clinical and preclinical investigation. In aggregate, we found that mutated cancer genes were associated with cellular response to most currently available cancer drugs. Classic oncogene addiction paradigms were modified by additional tissue-specific or expression biomarkers, and some frequently mutated genes were associated with sensitivity to a broad range of therapeutic agents. Unexpected relationships were revealed, including the marked sensitivity of Ewing's sarcoma cells harbouring the EWS (also known as EWSR1)-FLI1 gene translocation to poly(ADP-ribose) polymerase (PARP) inhibitors. By linking drug activity to the functional complexity of cancer genomes, systematic pharmacogenomic profiling in cancer cell lines provides a powerful biomarker discovery platform to guide rational cancer therapeutic strategies.
Resumo:
Fluctuations in ammonium (NH4+), measured as NH4-N loads using an ion-selective electrode installed at the inlet of a sewage treatment plant, showed a distinctive pattern which was associated to weekly (i.e., commuters) and seasonal (i.e., holidays) fluctuations of the population. Moreover, population size estimates based on NH4-N loads were lower compared to census data. Diurnal profiles of benzoylecgonine (BE) and 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THC-COOH) were shown to be strongly correlated to NH4-N. Characteristic patterns, which reflect the prolonged nocturnal activity of people during the weekend, could be observed for BE, cocaine, and a major metabolite of MDMA (i.e., 4-hydroxy-3-methoxymethamphetamine). Additional 24 h composite samples were collected between February and September 2013. Per-capita loads (i.e., grams per day per 1000 inhabitants) were computed using census data and NH4-N measurements. Normalization with NH4-N did not modify the overall pattern, suggesting that the magnitude of fluctuations in the size of the population is negligible compared to those of illicit drug loads. Results show that fluctuations in the size of the population over longer periods of time or during major events can be monitored using NH4-N loads: either using raw NH4-N loads or population size estimates based on NH4-N loads, if information about site-specific NH4-N population equivalents is available.
Resumo:
BACKGROUND: The Adolescent Drug Abuse Diagnosis (ADAD) and Health of Nation Outcome Scales for Children and Adolescents (HoNOSCA) are both measures of outcome for adolescent mental health services. AIMS: To compare the ADAD with HoNOSCA; to examine their clinical usefulness. METHODS: Comparison of the ADAD and HoNOSCA outcome measures of 20 adolescents attending a psychiatric day care unit. RESULTS: ADAD change was positively correlated with HoNOSCA change. HoNOSCA assesses the clinic's day-care programme more positively than the ADAD. The ADAD detects a group for which the mean score remains unchanged whereas HoNOSCA does not. CONCLUSIONS: A good convergent validity emerges between the two assessment tools. The ADAD allows an evidence-based assessment and generally enables a better subject discrimination than HoNOSCA. HoNOSCA gives a less refined evaluation but is more economic in time and possibly more sensitive to change. Both assessment tools give useful information and enabled the Day-care Unit for Adolescents to rethink the process of care and of outcome, which benefited both the institution and the patients.