2 resultados para Drills
em Université de Lausanne, Switzerland
Resumo:
This study investigated the influence of two warm-up protocols on neural and contractile parameters of knee extensors. A series of neuromuscular tests including voluntary and electrically evoked contractions were performed before and after running- (R (WU); slow running, athletic drills, and sprints) and strength-based (S (WU); bilateral 90 degrees back squats, Olympic lifting movements and reactivity exercises) warm ups (duration ~40 min) in ten-trained subjects. The estimated overall mechanical work was comparable between protocols. Maximal voluntary contraction torque (+15.6%; P < 0.01 and +10.9%; P < 0.05) and muscle activation (+10.9 and +12.9%; P < 0.05) increased to the same extent after R (WU) and S (WU), respectively. Both protocols caused a significant shortening of time to contract (-12.8 and -11.8% after R (WU) and S (WU); P < 0.05), while the other twitch parameters did not change significantly. Running- and strength-based warm ups induce similar increase in knee extensors force-generating capacity by improving the muscle activation. Both protocols have similar effects on M-wave and isometric twitch characteristics.
Resumo:
Introduction: Following a disaster, up to 50% of mass casualties are children. The number of disaster increases worldwide, including in Switzerland. Following national order, the mapping of the various risks of disaster in Switzerland will be completed by the end of 2012. Pre-hospital disaster drills and plans are well established and regularly tested. In-hospital disaster plans are much less frequently tested, if only available. Pediatric in-hospital full scale disaster exercises have never been reported in Switzerland. Based on our local constraints, we set up and evaluated a disaster plan during two full scale exercises. Methods: In a university hospital treating more than 35 000 pediatric emergencies per year, two exercises involving mock victims of a disaster aged 9 to 14 years old were successively set up over a period of 3 years. The exercises were planned during the day, without modification of the normal emergency room activities. The hospital staff was informed and trained in advance. Variables such as the alarm timing and transmission, triage set-up and function, special disaster medical records utilization, communication and victims' identification were assessed. Family members participated in the second exercise. An evaluation team observed and record exercises activities, identifying strength and weaknesses. Results: On two separate occasions, a total of 44 mock patients participated, were triaged, admitted and treated in the hospital according to usual standards of care. Alarm transmission was not appropriate during the first exercise. Triage overload occurred on one occasion. In-hospital communication needed readjustment. Identification and in-hospital tracking of the children remained problematic. Hospital employees showed great enthusiasm and stressed the positive effect of full scale exercises on their knowledge of the hospital disaster plan. Conclusions: Performing real life disaster exercises in a pediatric hospital was very beneficial. The disaster plan was adapted to local needs and updated accordingly. An alarm transmission protocol was elaborated and tested. Triage set-up was adapted and tested. A hospital identification plan for injured children was created and tested. Full scale hospital exercises evaluating disaster plans revealed several weaknesses in the system. Practice readjustments based on local experience were made. A tested pediatric disaster plan adapted to local constraints could minimize chaos, optimize care and support in the event of a real disaster. Children's identification and family reunification following a disaster remains a challenge.