150 resultados para Drets humans -- Xina
em Université de Lausanne, Switzerland
Resumo:
Whether the somatosensory system, like its visual and auditory counterparts, is comprised of parallel functional pathways for processing identity and spatial attributes (so-called what and where pathways, respectively) has hitherto been studied in humans using neuropsychological and hemodynamic methods. Here, electrical neuroimaging of somatosensory evoked potentials (SEPs) identified the spatio-temporal mechanisms subserving vibrotactile processing during two types of blocks of trials. What blocks varied stimuli in their frequency (22.5 Hz vs. 110 Hz) independently of their location (left vs. right hand). Where blocks varied the same stimuli in their location independently of their frequency. In this way, there was a 2x2 within-subjects factorial design, counterbalancing the hand stimulated (left/right) and trial type (what/where). Responses to physically identical somatosensory stimuli differed within 200 ms post-stimulus onset, which is within the same timeframe we previously identified for audition (De Santis, L., Clarke, S., Murray, M.M., 2007. Automatic and intrinsic auditory "what" and "where" processing in humans revealed by electrical neuroimaging. Cereb Cortex 17, 9-17.). Initially (100-147 ms), responses to each hand were stronger to the what than where condition in a statistically indistinguishable network within the hemisphere contralateral to the stimulated hand, arguing against hemispheric specialization as the principal basis for somatosensory what and where pathways. Later (149-189 ms) responses differed topographically, indicative of the engagement of distinct configurations of brain networks. A common topography described responses to the where condition irrespective of the hand stimulated. By contrast, different topographies accounted for the what condition and also as a function of the hand stimulated. Parallel, functionally specialized pathways are observed across sensory systems and may be indicative of a computationally advantageous organization for processing spatial and identity information.
Resumo:
Nitric oxide (NO) is crucial for the microvascular homeostasis, but its role played in the microvascular alterations during sepsis remains controversial. We investigated NO-dependent vasodilation in the skin microcirculation and plasma levels of asymmetric dimethylarginine (ADMA), a potent endogenous inhibitor of the NO synthases, in a human model of sepsis. In this double-blind, randomized, crossover study, microvascular NO-dependent (local thermal hyperemia) and NO-independent vasodilation (post-occlusive reactive hyperemia) assessed by laser Doppler imaging, plasma levels of ADMA, and l-arginine were measured in seven healthy obese volunteers, immediately before and 4 h after either a i.v. bolus injection of Escherichia coli endotoxin (LPS; 2 ng/kg) or normal saline (placebo) on two different visits at least 2 weeks apart. LPS caused the expected systemic effects, including increases in heart rate (+43%, P < 0.001), cardiac output (+16%, P < 0.01), and rectal temperature (+1.4°C, P < 0.001), without change in arterial blood pressure. LPS affected neither baseline skin blood flow nor post-occlusive reactive hyperemia but decreased the NO-dependent local thermal hyperemia response, l-arginine, and, to a lesser extent, ADMA plasma levels. The changes in NO-dependent vasodilation were not correlated with the corresponding changes in the plasma levels of ADMA, l-arginine, or the l-arginine/ADMA ratio. Our results show for the first time that experimental endotoxemia in humans causes a specific decrease in endothelial NO-dependent vasodilation in the microcirculation, which cannot be explained by a change in ADMA levels. Microvascular NO deficiency might be responsible for the heterogeneity of tissue perfusion observed in sepsis and could be a therapeutic target.
Resumo:
Normal visual perception requires differentiating foreground from background objects. Differences in physical attributes sometimes determine this relationship. Often such differences must instead be inferred, as when two objects or their parts have the same luminance. Modal completion refers to such perceptual "filling-in" of object borders that are accompanied by concurrent brightness enhancement, in turn termed illusory contours (ICs). Amodal completion is filling-in without concurrent brightness enhancement. Presently there are controversies regarding whether both completion processes use a common neural mechanism and whether perceptual filling-in is a bottom-up, feedforward process initiating at the lowest levels of the cortical visual pathway or commences at higher-tier regions. We previously examined modal completion (Murray et al., 2002) and provided evidence that the earliest modal IC sensitivity occurs within higher-tier object recognition areas of the lateral occipital complex (LOC). We further proposed that previous observations of IC sensitivity in lower-tier regions likely reflect feedback modulation from the LOC. The present study tested these proposals, examining the commonality between modal and amodal completion mechanisms with high-density electrical mapping, spatiotemporal topographic analyses, and the local autoregressive average distributed linear inverse source estimation. A common initial mechanism for both types of completion processes (140 msec) that manifested as a modulation in response strength within higher-tier visual areas, including the LOC and parietal structures, is demonstrated, whereas differential mechanisms were evident only at a subsequent time period (240 msec), with amodal completion relying on continued strong responses in these structures.
Resumo:
OBJECTIVE: Lipids stored in adipose tissue can originate from dietary lipids or from de novo lipogenesis (DNL) from carbohydrates. Whether DNL is abnormal in adipose tissue of overweight individuals remains unknown. The present study was undertaken to assess the effect of carbohydrate overfeeding on glucose-induced whole body DNL and adipose tissue lipogenic gene expression in lean and overweight humans. DESIGN: Prospective, cross-over study. SUBJECTS AND METHODS: A total of 11 lean (five male, six female, mean BMI 21.0+/-0.5 kg/m(2)) and eight overweight (four males, four females, mean BMI 30.1+/-0.6 kg/m(2)) volunteers were studied on two occasions. On one occasion, they received an isoenergetic diet containing 50% carbohydrate for 4 days prior to testing; on the other, they received a hyperenergetic diet (175% energy requirements) containing 71% carbohydrates. After each period of 4 days of controlled diet, they were studied over 6 h after having received 3.25 g glucose/kg fat free mass. Whole body glucose oxidation and net DNL were monitored by means of indirect calorimetry. An adipose tissue biopsy was obtained at the end of this 6-h period and the levels of SREBP-1c, acetyl CoA carboxylase, and fatty acid synthase mRNA were measured by real-time PCR. RESULTS: After isocaloric feeding, whole body net DNL amounted to 35+/-9 mg/kg fat free mass/5 h in lean subjects and to 49+/-3 mg/kg fat free mass/5 h in overweight subjects over the 5 h following glucose ingestion. These figures increased (P<0.001) to 156+/-21 mg/kg fat free mass/5 h in lean and 64+/-11 mg/kg fat free mass/5 h (P<0.05 vs lean) in overweight subjects after carbohydrate overfeeding. Whole body DNL after overfeeding was lower (P<0.001) and glycogen synthesis was higher (P<0.001) in overweight than in normal subjects. Adipose tissue SREBP-1c mRNA increased by 25% in overweight and by 43% in lean subjects (P<0.05) after carbohydrate overfeeding, whereas fatty acid synthase mRNA increased by 66 and 84% (P<0.05). CONCLUSION: Whole body net DNL is not increased during carbohydrate overfeeding in overweight individuals. Stimulation of adipose lipogenic enzymes is also not higher in overweight subjects. Carbohydrate overfeeding does not stimulate whole body net DNL nor expression of lipogenic enzymes in adipose tissue to a larger extent in overweight than lean subjects.
Resumo:
Vaccines have been used as a successful tool in medicine by way of controlling many major diseases. In spite of this, vaccines today represent only a handful of all infectious diseases. Therefore, there is a pressing demand for improvements of existing vaccines with particular reference to higher efficacy and undisputed safety profiles. To this effect, as an alternative to available vaccine technologies, there has been a drive to develop vaccine candidate polypeptides by chemical synthesis. In our laboratory, we have recently developed a technology to manufacture long synthetic peptides of up to 130 residues, which are correctly folded and biologically active. This paper discusses the advantages of the molecularly defined, long synthetic peptide approach in the context of vaccine design, development and use in human vaccination.
Resumo:
Experimentally renal tissue hypoxia appears to play an important role in the pathogenesis of chronic kidney disease (CKD) and arterial hypertension (AHT). In this study we measured renal tissue oxygenation and its determinants in humans using blood oxygenation level-dependent magnetic resonance imaging (BOLD-MRI) under standardized hydration conditions. Four coronal slices were selected, and a multi gradient echo sequence was used to acquire T2* weighted images. The mean cortical and medullary R2* values ( = 1/T2*) were calculated before and after administration of IV furosemide, a low R2* indicating a high tissue oxygenation. We studied 195 subjects (95 CKD, 58 treated AHT, and 42 healthy controls). Mean cortical R2 and medullary R2* were not significantly different between the groups at baseline. In stimulated conditions (furosemide injection), the decrease in R2* was significantly blunted in patients with CKD and AHT. In multivariate linear regression analyses, neither cortical nor medullary R2* were associated with eGFR or blood pressure, but cortical R2* correlated positively with male gender, blood glucose and uric acid levels. In conclusion, our data show that kidney oxygenation is tightly regulated in CKD and hypertensive patients at rest. However, the metabolic response to acute changes in sodium transport is altered in CKD and in AHT, despite preserved renal function in the latter group. This suggests the presence of early renal metabolic alterations in hypertension. The correlations between cortical R2* values, male gender, glycemia and uric acid levels suggest that these factors interfere with the regulation of renal tissue oxygenation.
Resumo:
Abstract (English)General backgroundMultisensory stimuli are easier to recognize, can improve learning and a processed faster compared to unisensory ones. As such, the ability an organism has to extract and synthesize relevant sensory inputs across multiple sensory modalities shapes his perception of and interaction with the environment. A major question in the scientific field is how the brain extracts and fuses relevant information to create a unified perceptual representation (but also how it segregates unrelated information). This fusion between the senses has been termed "multisensory integration", a notion that derives from seminal animal single-cell studies performed in the superior colliculus, a subcortical structure shown to create a multisensory output differing from the sum of its unisensory inputs. At the cortical level, integration of multisensory information is traditionally deferred to higher classical associative cortical regions within the frontal, temporal and parietal lobes, after extensive processing within the sensory-specific and segregated pathways. However, many anatomical, electrophysiological and neuroimaging findings now speak for multisensory convergence and interactions as a distributed process beginning much earlier than previously appreciated and within the initial stages of sensory processing.The work presented in this thesis is aimed at studying the neural basis and mechanisms of how the human brain combines sensory information between the senses of hearing and touch. Early latency non-linear auditory-somatosensory neural response interactions have been repeatedly observed in humans and non-human primates. Whether these early, low-level interactions are directly influencing behavioral outcomes remains an open question as they have been observed under diverse experimental circumstances such as anesthesia, passive stimulation, as well as speeded reaction time tasks. Under laboratory settings, it has been demonstrated that simple reaction times to auditory-somatosensory stimuli are facilitated over their unisensory counterparts both when delivered to the same spatial location or not, suggesting that audi- tory-somatosensory integration must occur in cerebral regions with large-scale spatial representations. However experiments that required the spatial processing of the stimuli have observed effects limited to spatially aligned conditions or varying depending on which body part was stimulated. Whether those divergences stem from task requirements and/or the need for spatial processing has not been firmly established.Hypotheses and experimental resultsIn a first study, we hypothesized that auditory-somatosensory early non-linear multisensory neural response interactions are relevant to behavior. Performing a median split according to reaction time of a subset of behavioral and electroencephalographic data, we found that the earliest non-linear multisensory interactions measured within the EEG signal (i.e. between 40-83ms post-stimulus onset) were specific to fast reaction times indicating a direct correlation of early neural response interactions and behavior.In a second study, we hypothesized that the relevance of spatial information for task performance has an impact on behavioral measures of auditory-somatosensory integration. Across two psychophysical experiments we show that facilitated detection occurs even when attending to spatial information, with no modulation according to spatial alignment of the stimuli. On the other hand, discrimination performance with probes, quantified using sensitivity (d'), is impaired following multisensory trials in general and significantly more so following misaligned multisensory trials.In a third study, we hypothesized that behavioral improvements might vary depending which body part is stimulated. Preliminary results suggest a possible dissociation between behavioral improvements andERPs. RTs to multisensory stimuli were modulated by space only in the case when somatosensory stimuli were delivered to the neck whereas multisensory ERPs were modulated by spatial alignment for both types of somatosensory stimuli.ConclusionThis thesis provides insight into the functional role played by early, low-level multisensory interac-tions. Combining psychophysics and electrical neuroimaging techniques we demonstrate the behavioral re-levance of early and low-level interactions in the normal human system. Moreover, we show that these early interactions are hermetic to top-down influences on spatial processing suggesting their occurrence within cerebral regions having access to large-scale spatial representations. We finally highlight specific interactions between auditory space and somatosensory stimulation on different body parts. Gaining an in-depth understanding of how multisensory integration normally operates is of central importance as it will ultimately permit us to consider how the impaired brain could benefit from rehabilitation with multisensory stimula-Abstract (French)Background théoriqueDes stimuli multisensoriels sont plus faciles à reconnaître, peuvent améliorer l'apprentissage et sont traités plus rapidement comparé à des stimuli unisensoriels. Ainsi, la capacité qu'un organisme possède à extraire et à synthétiser avec ses différentes modalités sensorielles des inputs sensoriels pertinents, façonne sa perception et son interaction avec l'environnement. Une question majeure dans le domaine scientifique est comment le cerveau parvient à extraire et à fusionner des stimuli pour créer une représentation percep- tuelle cohérente (mais aussi comment il isole les stimuli sans rapport). Cette fusion entre les sens est appelée "intégration multisensorielle", une notion qui provient de travaux effectués dans le colliculus supérieur chez l'animal, une structure sous-corticale possédant des neurones produisant une sortie multisensorielle différant de la somme des entrées unisensorielles. Traditionnellement, l'intégration d'informations multisen- sorielles au niveau cortical est considérée comme se produisant tardivement dans les aires associatives supérieures dans les lobes frontaux, temporaux et pariétaux, suite à un traitement extensif au sein de régions unisensorielles primaires. Cependant, plusieurs découvertes anatomiques, électrophysiologiques et de neuroimageries remettent en question ce postulat, suggérant l'existence d'une convergence et d'interactions multisensorielles précoces.Les travaux présentés dans cette thèse sont destinés à mieux comprendre les bases neuronales et les mécanismes impliqués dans la combinaison d'informations sensorielles entre les sens de l'audition et du toucher chez l'homme. Des interactions neuronales non-linéaires précoces audio-somatosensorielles ont été observées à maintes reprises chez l'homme et le singe dans des circonstances aussi variées que sous anes- thésie, avec stimulation passive, et lors de tâches nécessitant un comportement (une détection simple de stimuli, par exemple). Ainsi, le rôle fonctionnel joué par ces interactions à une étape du traitement de l'information si précoce demeure une question ouverte. Il a également été démontré que les temps de réaction en réponse à des stimuli audio-somatosensoriels sont facilités par rapport à leurs homologues unisensoriels indépendamment de leur position spatiale. Ce résultat suggère que l'intégration audio- somatosensorielle se produit dans des régions cérébrales possédant des représentations spatiales à large échelle. Cependant, des expériences qui ont exigé un traitement spatial des stimuli ont produits des effets limités à des conditions où les stimuli multisensoriels étaient, alignés dans l'espace ou encore comme pouvant varier selon la partie de corps stimulée. Il n'a pas été établi à ce jour si ces divergences pourraient être dues aux contraintes liées à la tâche et/ou à la nécessité d'un traitement de l'information spatiale.Hypothèse et résultats expérimentauxDans une première étude, nous avons émis l'hypothèse que les interactions audio- somatosensorielles précoces sont pertinentes pour le comportement. En effectuant un partage des temps de réaction par rapport à la médiane d'un sous-ensemble de données comportementales et électroencépha- lographiques, nous avons constaté que les interactions multisensorielles qui se produisent à des latences précoces (entre 40-83ms) sont spécifique aux temps de réaction rapides indiquant une corrélation directe entre ces interactions neuronales précoces et le comportement.Dans une deuxième étude, nous avons émis l'hypothèse que si l'information spatiale devient perti-nente pour la tâche, elle pourrait exercer une influence sur des mesures comportementales de l'intégration audio-somatosensorielles. Dans deux expériences psychophysiques, nous montrons que même si les participants prêtent attention à l'information spatiale, une facilitation de la détection se produit et ce toujours indépendamment de la configuration spatiale des stimuli. Cependant, la performance de discrimination, quantifiée à l'aide d'un index de sensibilité (d') est altérée suite aux essais multisensoriels en général et de manière plus significative pour les essais multisensoriels non-alignés dans l'espace.Dans une troisième étude, nous avons émis l'hypothèse que des améliorations comportementales pourraient différer selon la partie du corps qui est stimulée (la main vs. la nuque). Des résultats préliminaires suggèrent une dissociation possible entre une facilitation comportementale et les potentiels évoqués. Les temps de réactions étaient influencés par la configuration spatiale uniquement dans le cas ou les stimuli somatosensoriels étaient sur la nuque alors que les potentiels évoqués étaient modulés par l'alignement spatial pour les deux types de stimuli somatosensorielles.ConclusionCette thèse apporte des éléments nouveaux concernant le rôle fonctionnel joué par les interactions multisensorielles précoces de bas niveau. En combinant la psychophysique et la neuroimagerie électrique, nous démontrons la pertinence comportementale des ces interactions dans le système humain normal. Par ailleurs, nous montrons que ces interactions précoces sont hermétiques aux influences dites «top-down» sur le traitement spatial suggérant leur occurrence dans des régions cérébrales ayant accès à des représentations spatiales de grande échelle. Nous soulignons enfin des interactions spécifiques entre l'espace auditif et la stimulation somatosensorielle sur différentes parties du corps. Approfondir la connaissance concernant les bases neuronales et les mécanismes impliqués dans l'intégration multisensorielle dans le système normale est d'une importance centrale car elle permettra d'examiner et de mieux comprendre comment le cerveau déficient pourrait bénéficier d'une réhabilitation avec la stimulation multisensorielle.
Resumo:
The new angiotensin-converting enzyme (ACE) inhibitor idrapril acts by binding the catalytically important zinc ion to a hydroxamic group. We investigated its pharmacodynamic and pharmacokinetic properties in 8 healthy men: Increasing doses of 1, 5, and 25 mg idrapril as well as placebo or 5 mg captopril were administered intravenously (i.v.) at 1-week intervals. Six of the subjects received 100 mg idrapril orally (p.o.) last, and two ingested oral placebo as a double-blind control. Blood pressure (BP) and heart rate (HR) remained unchanged. No serious side effects were observed. ACE inhibition in vivo was evaluated by changes in the ratio of specifically measured plasma angiotensin II (AngII) and AngI concentrations determined by high-performance liquid chromatography/radioimmunoassay (HPLC/RIA) techniques. Plasma ACE activity in vitro was estimated by radioenzymatic assay; it was suppressed by > or = 93% at 15 min after injection of 25 mg idrapril or 5 mg captopril and by 96% 2 h after idrapril intake. Mean AngII levels were decreased dose dependently at 15 min after idrapril injections. At the same time, plasma renin activity (PRA) and AngI increased according to the doses. The AngII/AngI ratio was clearly related to plasma idrapril levels (r = -0.88, n = 60). Oral idrapril inhibited ACE maximally at 1-4 h after dosing, when < 7% of initial ACE activity was observed in vitro and in vivo. Idrapril is a safe and efficient ACE inhibitor in human subjects. It is well absorbed orally. Besides having a slightly slower onset of action, idrapril has pharmacodynamic effects comparable to those of captopril.
Resumo:
Interaural intensity and time differences (IID and ITD) are two binaural auditory cues for localizing sounds in space. This study investigated the spatio-temporal brain mechanisms for processing and integrating IID and ITD cues in humans. Auditory-evoked potentials were recorded, while subjects passively listened to noise bursts lateralized with IID, ITD or both cues simultaneously, as well as a more frequent centrally presented noise. In a separate psychophysical experiment, subjects actively discriminated lateralized from centrally presented stimuli. IID and ITD cues elicited different electric field topographies starting at approximately 75 ms post-stimulus onset, indicative of the engagement of distinct cortical networks. By contrast, no performance differences were observed between IID and ITD cues during the psychophysical experiment. Subjects did, however, respond significantly faster and more accurately when both cues were presented simultaneously. This performance facilitation exceeded predictions from probability summation, suggestive of interactions in neural processing of IID and ITD cues. Supra-additive neural response interactions as well as topographic modulations were indeed observed approximately 200 ms post-stimulus for the comparison of responses to the simultaneous presentation of both cues with the mean of those to separate IID and ITD cues. Source estimations revealed differential processing of IID and ITD cues initially within superior temporal cortices and also at later stages within temporo-parietal and inferior frontal cortices. Differences were principally in terms of hemispheric lateralization. The collective psychophysical and electrophysiological results support the hypothesis that IID and ITD cues are processed by distinct, but interacting, cortical networks that can in turn facilitate auditory localization.
Resumo:
To further validate the doubly labeled water method for measurement of CO2 production and energy expenditure in humans, we compared it with near-continuous respiratory gas exchange in nine healthy young adult males. Subjects were housed in a respiratory chamber for 4 days. Each received 2H2(18)O at either a low (n = 6) or a moderate (n = 3) isotope dose. Low and moderate doses produced initial 2H enrichments of 5 and 10 X 10(-3) atom percent excess, respectively, and initial 18O enrichments of 2 and 2.5 X 10(-2) atom percent excess, respectively. Total body water was calculated from isotope dilution in saliva collected at 4 and 5 h after the dose. CO2 production was calculated by the two-point method using the isotopic enrichments of urines collected just before each subject entered and left the chamber. Isotope enrichments relative to predose samples were measured by isotope ratio mass spectrometry. At low isotope dose, doubly labeled water overestimated average daily energy expenditure by 8 +/- 9% (SD) (range -7 to 22%). At moderate dose the difference was reduced to +4 +/- 5% (range 0-9%). The isotope elimination curves for 2H and 18O from serial urines collected from one of the subjects showed expected diurnal variations but were otherwise quite smooth. The overestimate may be due to approximations in the corrections for isotope fractionation and isotope dilution. An alternative approach to the corrections is presented that reduces the overestimate to 1%.
Resumo:
Gonadotropin hormones undergo important dynamic changes during life. Their rise during puberty stimulates gonadal steroid secretion, triggering the development of secondary sexual characteristics and the acquisition of fertility. The full spectrum of possible mutations and polymorphisms in the human gonadotropins and in their receptor genes has been described in recent years. Patients harboring these mutations display a very wide range of phenotypes affecting all aspects of the reproductive axis. An important insight provided by the careful study of these patients lies in the striking gender differences in the phenotypes associated with a given mutation. As a result, the careful study of these rare patients has allowed us to better define the respective roles of luteinizing hormone and follicle-stimulating hormone in normal human pubertal development and in the achievement of full fertility potential in either males or females. In this work, we describe briefly the known mutations in the genes for both gonadotropins and their receptors, and discuss their genotype/phenotype correlations in light of these important gender differences.
Resumo:
BACKGROUND: The pattern of substrate utilization with diets containing a high or a low proportion of unavailable and slowly digestible carbohydrates may constitute an important factor in the control, time course, and onset of hunger in humans. OBJECTIVE: We tested the hypothesis that isoenergetic diets differing only in their content of unavailable carbohydrates would result in different time courses of total, endogenous, and exogenous carbohydrate oxidation rates. DESIGN: Two diets with either a high (H diet) or a low (L diet) content of unavailable carbohydrates were fed to 14 healthy subjects studied during two 24-h periods in a metabolic chamber. Substrate utilization was assessed by whole-body indirect calorimetry. In a subgroup of 8 subjects, endogenous and exogenous carbohydrate oxidation were assessed by prelabeling the body glycogen stores with [(13)C]carbohydrate. Subjective feelings of hunger were estimated with use of visual analogue scales. RESULTS: Total energy expenditure and substrate oxidation did not differ significantly between the 2 diets. However, there was a significant effect of diet (P: = 0.03) on the carbohydrate oxidation pattern: the H diet elicited a lower and delayed rise of postprandial carbohydrate oxidation and was associated with lower hunger feelings than was the L diet. The differences in hunger scores between the 2 diets were significantly associated with the differences in the pattern of carbohydrate oxidation among diets (r = -0.67, P: = 0. 006). Exogenous and endogenous carbohydrate oxidation were not significantly influenced by diet. CONCLUSIONS: The pattern of carbohydrate utilization is involved in the modulation of hunger feelings. The greater suppression of hunger after the H diet than after the L diet may be helpful, at least over the short term, in individuals attempting to better control their food intake.