20 resultados para Dr. Balmis square
em Université de Lausanne, Switzerland
Resumo:
BACKGROUND: The early detection of medullary thyroid carcinoma (MTC) can improve patient prognosis, because histological stage and patient age at diagnosis are highly relevant prognostic factors. As a consequence, delay in the diagnosis and/or incomplete surgical treatment should correlate with a poorer prognosis for patients. Few papers have evaluated the specific capability of fine-needle aspiration cytology (FNAC) to detect MTC, and small series have been reported. This study conducts a meta-analysis of published data on the diagnostic performance of FNAC in MTC to provide more robust estimates. RESEARCH DESIGN AND METHODS: A comprehensive computer literature search of the PubMed/MEDLINE, Embase and Scopus databases was conducted by searching for the terms 'medullary thyroid' AND 'cytology', 'FNA', 'FNAB', 'FNAC', 'fine needle' or 'fine-needle'. The search was updated until 21 March 2014, and no language restrictions were used. RESULTS: Fifteen relevant studies and 641 MTC lesions that had undergone FNAC were included. The detection rate (DR) of FNAC in patients with MTC (diagnosed as 'MTC' or 'suspicious for MTC') on a per lesion-based analysis ranged from 12·5% to 88·2%, with a pooled estimate of 56·4% (95% CI: 52·6-60·1%). The included studies were statistically heterogeneous in their estimates of DR (I-square >50%). Egger's regression intercept for DR pooling was 0·03 (95% CI: -3·1 to 3·2, P = 0·9). The study that reported the largest MTC series had a DR of 45%. Data on immunohistochemistry for calcitonin in diagnosing MTC were inconsistent for the meta-analysis. CONCLUSIONS: The presented meta-analysis demonstrates that FNAC is able to detect approximately one-half of MTC lesions. These findings suggest that other techniques may be needed in combination with FNAC to diagnose MTC and avoid false negative results.
Resumo:
Interferon-gamma (IFN-gamma) modulates the expression of Class II major histocompatibility antigens (MHC), thus providing a potential regulatory mechanism for local immune reactivity in the context of MHC-restricted antigen presentation. Within the central nervous system (CNS), the expression of MHC Class II antigens has been demonstrated on human reactive astrocytes and glioma cells. In order to investigate the modulation of HLA-DR on normal astrocytes, two cell lines were grown from a 20-week-old fetal brain. In situ none of the fetal brain cells expressed HLA-DR as determined by immunohistology on frozen tissue sections. The two cell lines, FB I and FB II, expressed GFAP indicating their astrocytic origin. FB I was HLA-DR negative at the first tissue culture passages, but could be induced to express HLA-DR when treated with 500 U/ml IFN-gamma. FB II was spontaneously HLA-DR positive in the early passages, lost the expression of this antigen after 11 passages and could also be induced to express HLA-DR by IFN-gamma. The induction of HLA-DR expression was demonstrated both by a binding RIA and by immunoprecipitation using a monoclonal antibody (MAB) directed against a monomorphic determinant of HLA-DR. The HLA-DR alloantigens were determined on FB II cells after IFN-gamma treatment, by immunofluorescence and by cytotoxicity assays, and were shown to be DR4, DR6, Drw52, DRw53 and DQwl. These results show that human fetal astrocytes can be induced to express HLA-DR by IFN-gamma in vitro and support the concept that astrocytes may function as antigen-presenting cells.
Resumo:
Swain corrects the chi-square overidentification test (i.e., likelihood ratio test of fit) for structural equation models whethr with or without latent variables. The chi-square statistic is asymptotically correct; however, it does not behave as expected in small samples and/or when the model is complex (cf. Herzog, Boomsma, & Reinecke, 2007). Thus, particularly in situations where the ratio of sample size (n) to the number of parameters estimated (p) is relatively small (i.e., the p to n ratio is large), the chi-square test will tend to overreject correctly specified models. To obtain a closer approximation to the distribution of the chi-square statistic, Swain (1975) developed a correction; this scaling factor, which converges to 1 asymptotically, is multiplied with the chi-square statistic. The correction better approximates the chi-square distribution resulting in more appropriate Type 1 reject error rates (see Herzog & Boomsma, 2009; Herzog, et al., 2007).
Resumo:
The modulation of HLA-DR and HLA-A, -B, and -C by human recombinant immune interferon (IFN-gamma) was studied on 10 malignant glioma cell lines established in our laboratory, on 8 clones or subclones derived from these lines, and on a fetal astrocyte cell line. Comparative studies were performed with recombinant leukocyte interferon (IFN-alpha). The results not only confirmed the selective activity of IFN-gamma on the modulation of HLA-DR expression, as opposed to that of IFN-alpha, but also demonstrated a marked heterogeneity in the response of glioma cell lines and their clones to the two types of IFN tested. For example, all 3 clones of an inducible cell line could be modulated to express HLA-DR, whereas only 2 of 5 clones derived from a noninducible line were modulated. This heterogeneity did not seem to be due to the absence of the receptor for IFN-gamma on the surface of these cells, since almost all of the cell lines or clones tested (17 of 19) responded to IFN-gamma by the induction or enhancement of the expression for either HLA-DR or HLA-A, -B, and -C (or both). The heterogeneity of induction was also demonstrated between clones derived from a glioma line that did not express HLA-DR after IFN-gamma treatment. The production of HLA-DR by one of the clones was abundant enough to be confirmed by immunoprecipitation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis.
Resumo:
The basic photosynthetic unit containing the reaction centre and the light-harvesting I complex (RC-LHI) of the purple non-sulphur bacterium Rhodospirillum rubrum was purified and reconstituted into two-dimensional (2D) membrane crystals. Transmission electron microscopy using conventional techniques and cryoelectron microscopy of the purified single particles and of 2D crystals yielded a projection of the RC-LHI complex at a resolution of at least 1.6 nm. In this projection the LHI ring appears to have a square symmetry and packs in a square crystal lattice. The square geometry of the LHI ring was observed also in images of single isolated particles of the RC-LHI complex. However, although the LHI units are packed identically within the crystal lattice, a new rotational analysis developed here showed that the reaction centres take up one of four possible orientations within the ring. This fourfold disorder supports our interpretation of a square ring symmetry and suggests that a hitherto undetected component may be present within the photosynthetic unit.
Resumo:
Cycling lymphocytes may express the enzyme telomerase which is involved in maintenance of telomere length and cell proliferation potential. In CD8(+) T cells freshly isolated from peripheral blood, we found that in vivo cycling cells expressed HLA-DR. Furthermore, CD28-positive cells are known to have longer telomeres than CD28-negative T cells. Therefore we used HLA-DR- and CD28-specific antibodies to sort CD8(+) T cells and measure telomerase activity ex vivo. Relatively high levels of telomerase activity were found in HLA-DR/CD28 double-positive cells. In contrast, HLA-DR-negative and CD28-negative cells had almost no telomerase activity. In summary, HLA-DR expression correlates with proliferation, and CD28 expression with proliferative potential. We have previously identified that ex vivo cytolytic CD8(+) T cells are CD56 (NCAM) positive. Here we show that HLA-DR(+) cells were rarely CD56(+) and vice versa. This demonstrates that telomerase-expressing and cytolytic CD8(+) T cells can be separated on the basis of the cell surface markers HLA-DR and CD56. Thus, activated CD8(+) T cells specialize and exert distinct functions correlating with surface molecule expression.
Resumo:
The reactivity spectrum of three monoclonal antibodies (Mabs) to human malignant glioma, five Mabs to melanomas and one Mab anti-HLA-DR was investigated by an indirect antibody binding radioimmunoassay on a panel of cells derived from 60 glioma lines, including 47 malignant astrocytomas, 11 low-grade astrocytomas and two malignant ependymomas as well on cells from 12 melanoma, three neuroblastoma, three medulloblastoma, two schwannoma, two retinoblastoma, two choroïd plexus papilloma, ten meningioma and 12 unrelated tumor lines. The anti-glioma Mabs BF7 and GE2 reacted preferentially with gliomas, while the anti-glioma Mab CG12 reacted with gliomas, melanomas, neuroblastomas and medulloblastomas. The five anti-melanoma Mabs reacted with gliomas, neuroblastomas and medulloblastomas. The anti-HLA-DR Mab D1-12 reacted with gliomas, melanomas and some meningiomas. On the basis of the data presented, we describe three different antigenic systems; the first one is glioma-associated, the second one is related to differentiation antigens expressed on cells derived from the neuroectoderm and the third is represented by HLA-DR antigens which are expressed not only on B-lymphoblastoid cells but also on melanomas and gliomas.