186 resultados para Down"s syndrome
em Université de Lausanne, Switzerland
Resumo:
Anorectal malformation (ARM) can be divided in high, intermediate, and low forms according to the level of termination of the rectum in relation to the pubococcygeal and ischiatic lines. Patients with Down's syndrome have a high incidence of gastrointestinal anomalies, such as tracheoesophageal fistula, duodenal obstruction, annular pancreas, Hirschsprung's disease, and ARM. In these children, ARM is generally low with or without a fistula. The mode of inheritance of ARM and its genetic relation with Down's syndrome is not known, even if the association (ARM-Down's syndrome) seems not to be coincidental. We describe here a very rare case of monozygotic twins born with the association of ARM and Down's syndrome.
Resumo:
OBJECTIVE: To 'map' the current (2004) state of prenatal screening in Europe. DESIGN: (i) Survey of country policies and (ii) analysis of data from EUROCAT (European Surveillance of Congenital Anomalies) population-based congenital anomaly registers. SETTING: Europe. POPULATION: Survey of prenatal screening policies in 18 countries and 1.13 million births in 12 countries in 2002-04. METHODS: (i) Questionnaire on national screening policies and termination of pregnancy for fetal anomaly (TOPFA) laws in 2004. (ii) Analysis of data on prenatal detection and termination for Down's syndrome and neural tube defects (NTDs) using the EUROCAT database. MAIN OUTCOME MEASURES: Existence of national prenatal screening policies, legal gestation limit for TOPFA, prenatal detection and termination rates for Down's syndrome and NTD. RESULTS: Ten of the 18 countries had a national country-wide policy for Down's syndrome screening and 14/18 for structural anomaly scanning. Sixty-eight percent of Down's syndrome cases (range 0-95%) were detected prenatally, of which 88% resulted in termination of pregnancy. Eighty-eight percent (range 25-94%) of cases of NTD were prenatally detected, of which 88% resulted in termination. Countries with a first-trimester screening policy had the highest proportion of prenatally diagnosed Down's syndrome cases. Countries with no official national Down's syndrome screening or structural anomaly scan policy had the lowest proportion of prenatally diagnosed Down's syndrome and NTD cases. Six of the 18 countries had a legal gestational age limit for TOPFA, and in two countries, termination of pregnancy was illegal at any gestation. CONCLUSIONS: There are large differences in screening policies between countries in Europe. These, as well as organisational and cultural factors, are associated with wide country variation in prenatal detection rates for Down's syndrome and NTD.
Resumo:
BACKGROUND: This study reviews the 15 year program of our Department of Pediatric Surgery for the treatment and follow-up of children born with a cleft in Benin and Togo. METHODS: We analyzed files of children born in Africa with a cleft. They were referred to us through a nongovernmental organization (NGO) between 1993 and 2008 and assessed in Africa by local pediatricians before and after surgery. Operations were performed by our team. RESULTS: Two hundred files were reviewed: 60 cases of unilateral cleft lip, seven of bilateral cleft lip, 44 of unilateral cleft lip palate (UCLP), 29 of bilateral cleft lip palate (BCLP), 53 of cleft palate (CP), three of bilateral oro-ocular cleft, one of unilateral and two of median clefts (Binder), and one of commissural cleft. Sixty-nine (35 %) of these cases were not operated in Africa: 25 (12.5 %) had not shown up, 28 (15 %) were considered unfit for surgery (Down's syndrome, HIV-positive, malnutrition, cardiac malformation), and 16 (7.5 %) were transferred to Switzerland. Palatal fistula occurred in 20 % of UCLP, 30 % of BCLP, and 16 % of CP. Evaluation of speech after palate surgery gave less than 50 % of socially acceptable speech. CONCLUSIONS: Our partnership with a NGO and a local team makes it possible to treat and subsequently follow children born with a cleft in West Africa. Surgery is performed under good conditions. If aesthetic results are a success, functional results after palate surgery need further improvement to promote integration in school and social life.
Resumo:
Mothers' general anxiety, anxiety about the well-being of the child and psychological stress before prenatal testing was studied by comparing women who conceived through in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI) with women who conceived naturally. Before the first trimester screening test for Down's syndrome, a group of 51 women who conceived through IVF/ICSI and a group of 54 women who conceived spontaneously completed the State Scale of the State-Trait Anxiety Inventory (S-Anxiety; Spielberger, 1983), the Fear of Bearing a Physically or Mentally Handicapped Child Subscale of the Pregnancy-related Anxiety Questionnaire (PRAQ-R; Huizink et al., 2004), the Psychological Stress Measure (PSM; Lemyre & Tessier, 1988), and the Prenatal Psychosocial Profile (PPP; Curry, Campbell, & Christian, 1994). Women who conceived through IVF/ICSI had more elevated levels of general anxiety and psychological stress than the women who conceived naturally; however, no difference was observed between the two groups for anxiety specifically related to the health of the child. These results underline the need to monitor women's emotional state after conception via IVF/ICSI-when counseling usually ends-and around the time of the first trimester screening. Counseling might thus be extended.
Resumo:
1.1 AbstractThe treatment of memory disorders and cognitive deficits in various forms of mental retardation may greatly benefit from a better understanding of the molecular and cellular mechanisms of memory formation. Different forms of memory have distinct molecular requirements.Short-term memory (STM) is thought to be mediated by covalent modifications of existing synaptic molecules, such as phosphorylation or dephosphorylation of enzymes, receptors or ion channels. In contrast, long-term memoiy (LTM) is thought to be mediated by growth of new synapses and restructuring of existing synapses. There is extensive evidence that changes in gene expression and de novo protein synthesis are key processes for LTM formation. In this context, the transcription factor CREB (cAMP-response element-binding protein) was shown to be crucial. Activation of CREB requires phosphorylation of a serine residue (Ser-133), and the subsequent recruitment of a coactivator called CREB-binding protein (CBP). Moreover, we have recently shown that another coactivator called CREB Regulated Transcription Coactivator 1 (CRTC1) functions as a calcium- and cAMP-sensitive coincidence detector in neurons, and is involved in hippocampal long-term synaptic plasticity. Given the importance of cAMP and calcium signaling for plasticity-related gene expression in neurons and in astrocytes, we sought to determine the respective involvement of the CREB coactivators CBP and CRTC1 in CREB-mediated transcription.We developed various strategies to selectively interfere with these CREB coactivators in mouse primary neurons and in astrocytes in vitro. However, despite several pieces of evidence implicating CBP and/or CRTC1 in the regulation of neuronal plasticity genes, we could not clearly determine the respective requirement of these coactivators for the activation of these genes. Nevertheless, we showed that calcineurin activity, which is important for CRTC1 nuclear translocation, is necessary for the expression of some CREB-regulated plasticity genes. We associated this phenomena to physiopathological conditions observed in Down's syndrome. In addition, we demonstrated that in astrocytes, noradrenaline stimulates CREB-target gene expression through β-adrenergic receptor activation, intracellular cAMP pathway activation, and CRTC-induced CREB transactivation.Defining the respective role of CREB and its coactivators CBP and CRTC1 in neuronal and astrocytic cultures in vitro sets the stage for future in vivo studies and for the possible development of new therapeutic strategies to improve the treatment of memoiy and cognitive disorders.1.2 RésuméUne meilleure connaissance des mécanismes moléculaires et cellulaires responsables de la formation de la mémoire pourrait grandement améliorer le traitement des troubles de la mémoire ainsi que des déficits cognitifs observés dans différentes formes de pathologies psychiatriques telles que le retard mental. Les différentes formes de mémoire dépendent de processus moléculaires différents.La mémoire à court terme (STM) semble prendre forme suite à des modifications covalentes de molécules synaptiques préexistantes, telles que la phosphorylation ou la déphosphorylation d'enzymes, de récepteurs ou de canaux ioniques. En revanche, la mémoire à long terme (LTM) semble être due à la génération de nouvelles synapses et à la restructuration des synapses existantes. De nombreuses études ont permis de démontrer que les changements dans l'expression des gènes et la synthèse de protéine de novo sont des processus clés pour la formation de la LTM. Dans ce contexte, le facteur de transcription CREB (cAMP-response element-binding protein) s'est avéré être un élément crucial. L'activation de CREB nécessite la phosphorylation d'un résidu sérine (Ser-133), et le recrutement d'un coactivateur nommé CBP (CREB binding protein). En outre, nous avons récemment démontré qu'un autre coactivateur de CREB nommé CRTC1 (CREB Regulated Transcription Coactivator 1) agit comme un détecteur de coïncidence de l'AMP cyclique (AMPc) et du calcium dans les neurones et qu'il est impliqué dans la formation de la plasticité synaptique à long terme dans l'hippocampe. Etant donné l'importance des voies de l'AMPc et du calcium dans l'expression des gènes impliqués dans la plasticité cérébrale, nous voulions déterminer le rôle respectif des coactivateurs de CREB, CBP et CRTC1.Nous avons développé diverses stratégies pour interférer de façon sélective avec les coactivateurs de CREB dans les neurones et dans les astrocytes chez la souris in vitro. Nos résultats indiquent que CBP et CRTC1 sont tous deux impliqués dans la transcription dépendante de CREB induite par l'AMPc et le calcium dans les neurones. Cependant, malgré plusieurs évidences impliquant CBP et/ou CRTC1 dans l'expression de gènes de plasticité neuronale, nous n'avons pas pu déterminer clairement leur nécessité respective pour l'activation de ces gènes. Toutefois, nous avons montré que l'activité de la calcineurine, dont dépend la translocation nucléaire de CRTC1, est nécessaire à l'expression de certains de ces gènes. Nous avons pu associer ce phénomène à une condition physiopathologique observée dans le syndrome de Down. Nous avons également montré que dans les astrocytes, la noradrénaline stimule l'expression de gènes cibles de CREB par une activation des récepteurs β- adrénergiques, l'activation de la voie de l'AMPc et la transactivation de CREB par les CRTCs.Définir le rôle respectif de CREB et de ses coactivateurs CBP et CRTC1 dans les neurones et dans les astrocytes in vitro permettra d'acquérir les connaissances nécessaires à de futures études in vivo et, à plus long terme d'éventuellement développer des stratégies thérapeutiques pour améliorer les traitements des troubles cognitifs.
Resumo:
Trisomy 21 is the most frequent genetic cause of cognitive impairment. To assess the perturbations of gene expression in trisomy 21, and to eliminate the noise of genomic variability, we studied the transcriptome of fetal fibroblasts from a pair of monozygotic twins discordant for trisomy 21. Here we show that the differential expression between the twins is organized in domains along all chromosomes that are either upregulated or downregulated. These gene expression dysregulation domains (GEDDs) can be defined by the expression level of their gene content, and are well conserved in induced pluripotent stem cells derived from the twins' fibroblasts. Comparison of the transcriptome of the Ts65Dn mouse model of Down's syndrome and normal littermate mouse fibroblasts also showed GEDDs along the mouse chromosomes that were syntenic in human. The GEDDs correlate with the lamina-associated (LADs) and replication domains of mammalian cells. The overall position of LADs was not altered in trisomic cells; however, the H3K4me3 profile of the trisomic fibroblasts was modified and accurately followed the GEDD pattern. These results indicate that the nuclear compartments of trisomic cells undergo modifications of the chromatin environment influencing the overall transcriptome, and that GEDDs may therefore contribute to some trisomy 21 phenotypes.
Resumo:
This study examines trends and geographical differences in total and live birth prevalence of trisomies 21, 18 and 13 with regard to increasing maternal age and prenatal diagnosis in Europe. Twenty-one population-based EUROCAT registries covering 6.1 million births between 1990 and 2009 participated. Trisomy cases included live births, fetal deaths from 20 weeks gestational age and terminations of pregnancy for fetal anomaly. We present correction to 20 weeks gestational age (ie, correcting early terminations for the probability of fetal survival to 20 weeks) to allow for artefactual screening-related differences in total prevalence. Poisson regression was used. The proportion of births in the population to mothers aged 35+ years in the participating registries increased from 13% in 1990 to 19% in 2009. Total prevalence per 10 000 births was 22.0 (95% CI 21.7-22.4) for trisomy 21, 5.0 (95% CI 4.8-5.1) for trisomy 18 and 2.0 (95% CI 1.9-2.2) for trisomy 13; live birth prevalence was 11.2 (95% CI 10.9-11.5) for trisomy 21, 1.04 (95% CI 0.96-1.12) for trisomy 18 and 0.48 (95% CI 0.43-0.54) for trisomy 13. There was an increase in total and total corrected prevalence of all three trisomies over time, mainly explained by increasing maternal age. Live birth prevalence remained stable over time. For trisomy 21, there was a three-fold variation in live birth prevalence between countries. The rise in maternal age has led to an increase in the number of trisomy-affected pregnancies in Europe. Live birth prevalence has remained stable overall. Differences in prenatal screening and termination between countries lead to wide variation in live birth prevalence.
Resumo:
Persons with Down syndrome (DS) uniquely have an increased frequency of leukemias but a decreased total frequency of solid tumors. The distribution and frequency of specific types of brain tumors have never been studied in DS. We evaluated the frequency of primary neural cell embryonal tumors and gliomas in a large international data set. The observed number of children with DS having a medulloblastoma, central nervous system primitive neuroectodermal tumor (CNS-PNET) or glial tumor was compared to the expected number. Data were collected from cancer registries or brain tumor registries in 13 countries of Europe, America, Asia and Oceania. The number of DS children with each category of tumor was treated as a Poisson variable with mean equal to 0.000884 times the total number of registrations in that category. Among 8,043 neural cell embryonal tumors (6,882 medulloblastomas and 1,161 CNS-PNETs), only one patient with medulloblastoma had DS, while 7.11 children in total and 6.08 with medulloblastoma were expected to have DS. (p 0.016 and 0.0066 respectively). Among 13,797 children with glioma, 10 had DS, whereas 12.2 were expected. Children with DS appear to be specifically protected against primary neural cell embryonal tumors of the CNS, whereas gliomas occur at the same frequency as in the general population. A similar protection against neuroblastoma, the principal extracranial neural cell embryonal tumor, has been observed in children with DS. Additional genetic material on the supernumerary chromosome 21 may protect against embryonal neural cell tumor development.
Resumo:
Caspase cleaved amyloid precursor protein (APPcc) and SET are increased and mislocalized in the neuronal cytoplasm in Alzheimer Disease (AD) brains. Translocated SET to the cytoplasm can induce tau hyperphosphorylation. To elucidate the putative relationships between mislocalized APPcc and SET, we studied their level and distribution in the hippocampus of 5 controls, 3 Down syndrome and 10 Alzheimer patients. In Down syndrome and Alzheimer patients, APPcc and SET levels were increased in CA1 and the frequency of both localizations in the neuronal cytoplasm was high in CA1, and low in CA4. As the increase of APPcc is already present at early stages of AD, we overexpressed APPcc in CA1 and the dentate gyrus neurons of adult mice with a lentiviral construct. APPcc overexpression in CA1 and not in the dentate gyrus induced endogenous SET translocation and tau hyperphosphorylation. These data suggest that increase in APPcc in CA1 neurons could be an early event leading to the translocation of SET and the progression of AD through tau hyperphosphorylation.
Resumo:
OBJECTIVES: To determine the risk of a Down syndrome (DS) live birth for women 45 years of age and over. METHODS: A meta-analysis of data from five published articles, 13 EUROCAT congenital anomaly population registers and two unpublished sources. RESULTS: Information was available on the number of DS live births occurring amongst 13,745 live births to women 45 years of age and over. Information was also available on DS pregnancies diagnosed prenatally that were subsequently terminated. These pregnancies were adjusted for expected fetal loss to estimate the number of live births that would have occurred in the absence of prenatal diagnoses, when a total of 471 DS live births were estimated to have occurred. The risk of a DS birth did not increase for women 45 years of age and over. The average risk was 34 per 1000 births (95% CI: 31-37). CONCLUSION: The risk of a DS live birth for women 45 years of age and over is considerably lower than has often been previously assumed. The most likely explanation is that women of this age are more likely to miscarry DS pregnancies than younger mothers.
Resumo:
OBJECTIVE: To determine risk of Down syndrome (DS) in multiple relative to singleton pregnancies, and compare prenatal diagnosis rates and pregnancy outcome. DESIGN: Population-based prevalence study based on EUROCAT congenital anomaly registries. SETTING: Eight European countries. POPULATION: 14.8 million births 1990-2009; 2.89% multiple births. METHODS: DS cases included livebirths, fetal deaths from 20 weeks, and terminations of pregnancy for fetal anomaly (TOPFA). Zygosity is inferred from like/unlike sex for birth denominators, and from concordance for DS cases. MAIN OUTCOME MEASURES: Relative risk (RR) of DS per fetus/baby from multiple versus singleton pregnancies and per pregnancy in monozygotic/dizygotic versus singleton pregnancies. Proportion of prenatally diagnosed and pregnancy outcome. STATISTICAL ANALYSIS: Poisson and logistic regression stratified for maternal age, country and time. RESULTS: Overall, the adjusted (adj) RR of DS for fetus/babies from multiple versus singleton pregnancies was 0.58 (95% CI 0.53-0.62), similar for all maternal ages except for mothers over 44, for whom it was considerably lower. In 8.7% of twin pairs affected by DS, both co-twins were diagnosed with the condition. The adjRR of DS for monozygotic versus singleton pregnancies was 0.34 (95% CI 0.25-0.44) and for dizygotic versus singleton pregnancies 1.34 (95% CI 1.23-1.46). DS fetuses from multiple births were less likely to be prenatally diagnosed than singletons (adjOR 0.62 [95% CI 0.50-0.78]) and following diagnosis less likely to be TOPFA (adjOR 0.40 [95% CI 0.27-0.59]). CONCLUSIONS: The risk of DS per fetus/baby is lower in multiple than singleton pregnancies. These estimates can be used for genetic counselling and prenatal screening.
Resumo:
First trimester biochemical trisomy screening is based on serum concentrations of pregnancy-associated plasma protein A (PAPP-A) and human chorionic gonadotrophin (hCG). Our aim was to confirm previously suggested modifications in serum marker concentrations after in vitro fertilisation (IVF) and embryo transfer (ET), and to assess the need of establishing normal medians for trisomy screening in these. We compared 56 singleton pregnancies obtained after ET (of which 40 in gonadotrophin stimulation cycles) with 120 gestation-matched spontaneous controls. For multiple pregnancies, 17 treated cycles were compared with 25 controls. The levels of PAPP-A, hCG, and pregnancy-specific β1-glycoprotein were determined and compared between treated and spontaneous pregnancies. Serum PAPP-A levels were reduced in pregnancies achieved after gonadotrophin-stimulated IVF and ET, and this was more pronounced in earlier gestational stages. SP1 followed the same trend, while hCG tended to be increased, and this not only in pregnancies obtained from gonadotrophin-stimulated but also from oestrogen supported cycles, and with a more pronounced effect in the later gestational ages examined here. Decreased PAPP-A together with increased hCG concentrations produce falsely elevated results in first trimester Down syndrome screening, but we do not recommend the establishment of normal medians for IVF pregnancies due to the variations in stimulation protocols.