11 resultados para Domain of attraction
em Université de Lausanne, Switzerland
Resumo:
Retroviruses are both powerful evolutionary forces and dangerous threats to genome integrity. As such, they have imposed strong selective pressure on their hosts, notably triggering the emergence of restriction factors, such as TRIM5 alpha, that act as potent barriers to their cross-species transmission. TRIM5 alpha orthologues from different primates have distinct retroviral restriction patterns, largely dictated by the sequence of their C-terminal PRYSPRY domain, which binds the capsid protein of incoming virions. Here, by combining genetic and functional analyses of human and squirrel monkey TRIM5 alpha, we demonstrate that the coiled-coil domain of this protein, thus far essentially known for mediating oligomerization, also conditions the spectrum of antiretroviral activity. Furthermore, we identify three coiled-coil residues responsible for this effect, one of which has been under positive selection during primate evolution, notably in New World monkeys. These results indicate that the PRYSPRY and coiled-coil domains cooperate to determine the specificity of TRIM5 alpha-mediated capture of retroviral capsids, shedding new light on this complex event.
Resumo:
Na,K-ATPase is the main active transport system that maintains the large gradients of Na(+) and K(+) across the plasma membrane of animal cells. The crystal structure of a K(+)-occluding conformation of this protein has been recently published, but the movements of its different domains allowing for the cation pumping mechanism are not yet known. The structure of many more conformations is known for the related calcium ATPase SERCA, but the reliability of homology modeling is poor for several domains with low sequence identity, in particular the extracellular loops. To better define the structure of the large fourth extracellular loop between the seventh and eighth transmembrane segments of the alpha subunit, we have studied the formation of a disulfide bond between pairs of cysteine residues introduced by site-directed mutagenesis in the second and the fourth extracellular loop. We found a specific pair of cysteine positions (Y308C and D884C) for which extracellular treatment with an oxidizing agent inhibited the Na,K pump function, which could be rapidly restored by a reducing agent. The formation of the disulfide bond occurred preferentially under the E2-P conformation of Na,K-ATPase, in the absence of extracellular cations. Using recently published crystal structure and a distance constraint reproducing the existence of disulfide bond, we performed an extensive conformational space search using simulated annealing and showed that the Tyr(308) and Asp(884) residues can be in close proximity, and simultaneously, the SYGQ motif of the fourth extracellular loop, known to interact with the extracellular domain of the beta subunit, can be exposed to the exterior of the protein and can easily interact with the beta subunit.
Resumo:
Les virus exploitent la machinerie cellulaire de l'hôte pour se répliquer. Ils doivent s'adapter pour infecter la cellule hôte de manière optimale tout en échappant à la vigilance du système de défense de l'hôte. Ainsi l'hôte et les virus se livrent à de constantes batailles évolutives. Mon travail de thèse a porté sur l'étude des signatures évolutives de facteurs de l'hôte agissant comme des 'facteurs de restriction' en bloquant la réplication rétrovirale chez les primates. Plus spécifiquement, mon travail a visé à utiliser des données évolutives pour renseigner les analyses fonctionnelles et la biologie. Nous avons étudié le facteur anti-VIH-1 nommé TRIM5a (i) chez les prosimiens pour mieux comprendre son rôle dans le contrôle d'un lentivirus endogène, (ii) dans son activité contre d'autres anciennes infections représentées par des rétrovirus endogènes humains et (iii) en tant que protéine capable de générer des mutants de la capside. Premièrement nous nous sommes intéressés à TRIM5a chez deux espèces de lémuriens dont Microcebus murinus qui porte le lentivirus endogène PSIV dans son génome depuis plusieurs millions d'années,. Nous avons observé que TRIM5a chez M. murinus a un spectre d'activité antivirale réduit à l'opposé de TRIM5a chez le Lemur catta - non porteur du PSIV endogène - qui bloque une large variété de rétrovirus dont le PSIV. De ce fait TRIM5a aurait pu contribuer à protéger certaines espèces de lémuriens vis-à-vis d'anciennes infections par le PSIV. A l'inverse du PSIV, des virus dérivés des rétrovirus endogènes humains HERV-K and HERV-H se sont révélés largement résistants à l'inhibition par TRIM5a. Ces données illustrent une absence de protection par TRIM5a face à d'autres anciennes infections rétrovirales. Puis, pour évaluer l'impact de la protéine TRIM5a humaine sur le VIH-1, nous avons testé l'effet de mutations des résidues sous sélection positive dans la capside du VIH-1 sur l'inhibition par TRIM5a. Nos résultats montrent que TRIM5a ne jouerait pas un rôle significatif dans l'évolution de la capside du VIH-1. Enfin notre travail a porté sur le facteur anti-VIH-1 SAMHD1 récemment découvert, que nous avons séquencé chez 25 espèces de primates. L'analyse évolutive des sites sous sélection positive et des expériences fonctionnelles ont permis d'identifier le domaine de SAMHD1 interagissant avec la protéine lentivirale Vpx. De même que d'autres protéines virales contrecarrent les facteurs de restriction en les menant à la dégradation, nous avons observé que Vpx induit la dégradation de SAMHD1 de manière spécifique à l'espèce. Ces découvertes contribuent à comprendre comment les facteurs de restriction et les virus co-évoluent pour se neutraliser l'un l'autre. - Viruses hijack the host cellular machinery to replicate. They adapt to infect optimally host cells while escaping host defense systems. Viruses and the host coevolve in an evolutionary struggle. My thesis work has been devoted to study the evolutionary signatures of host factors acting as restriction factors that block retroviral replication in primates. Specifically, my work aimed at using evolutionary data to inform functional analyses and biology. We studied the anti-HIV-1 factor TRIM5a (i) in prosimians to better understand its possible role in the control of an endogenous lentivirus, (ii) in its activity against other ancient infections - as represented by HERVs, and (iii) as a protein capable of generating escape mutants in the viral capsid. First, my work focused on two lemur species, one of which was the gray mouse lemur that carries the endogenous lentivirus PSIV integrated in its genome for several million years. TRIM5a from gray mouse lemur exhibited a limited antiviral spectrum as opposed to TRIM5a from ring-tailed lemur - not a host of PSIV - that is able to block diverse retroviruses notably PSIV. These results support the possible contribution of TRIM5a in protecting lemur species from ancient infection by PSIV. In contrast, chimeric viruses derived from two human endogenous retroviruses were broadly resistant to TRIM5a-mediated restriction, suggesting TRIM5a lack of activity against other types of ancient infections. To evaluate the recent impact of human TRIM5a on HIV-1 evolution, we tested whether variants at positively selected sites in the HIV-1 capsid affected the ability of human TRIM5a alleles to restrict HIV-1. Our results indicate that TRIM5a does not play a significant role in the evolution of HIV1 capsid. At last, our work concentrated on the newly discovered anti-HIV-1 restriction factor SAMHD1. We determined its coding sequence in a panel of 25 species of primates. Evolutionary analyses of positively selected sites in SAMHD1 domains and functional assays identified the domain of SAMHD1 interacting with the lentiviral protein Vpx. Similar to other viral countermeasures targeting cellular restriction factors, Vpx was responsible of the degradation of SAMHD1 orthologs in a species-specific manner. These findings contributed to understanding how restriction factors and viruses evolve to counteract each other.
Resumo:
Knowledge of the spatial distribution of hydraulic conductivity (K) within an aquifer is critical for reliable predictions of solute transport and the development of effective groundwater management and/or remediation strategies. While core analyses and hydraulic logging can provide highly detailed information, such information is inherently localized around boreholes that tend to be sparsely distributed throughout the aquifer volume. Conversely, larger-scale hydraulic experiments like pumping and tracer tests provide relatively low-resolution estimates of K in the investigated subsurface region. As a result, traditional hydrogeological measurement techniques contain a gap in terms of spatial resolution and coverage, and they are often alone inadequate for characterizing heterogeneous aquifers. Geophysical methods have the potential to bridge this gap. The recent increased interest in the application of geophysical methods to hydrogeological problems is clearly evidenced by the formation and rapid growth of the domain of hydrogeophysics over the past decade (e.g., Rubin and Hubbard, 2005).
Resumo:
In this study, we describe a patient with a phenotype of complete hypogonadotropic hypogonadism who presented primary failure of pulsatile GnRH therapy, but responded to exogenous gonadotropin administration. This patient bore a novel point mutation (T for A) at codon 168 of the gene encoding the GnRH receptor (GnRH-R), resulting in a serine to arginine change in the fourth transmembrane domain of the receptor. This novel mutation was present in the homozygous state in the patient, whereas it was in the heterozygous state in both phenotypically normal parents. When introduced into the complementary DNA coding for the GnRH-R, this mutation resulted in the complete loss of the receptor-mediated signaling response to GnRH. In conclusion, we report the first mutation of the GnRH-R gene that can induce a total loss of function of this receptor and is associated with a phenotype of complete hypogonadotropic hypogonadism.
Resumo:
The CD3ε cytoplasmic tail contains a conserved proline-rich sequence (PRS) that influences TCR-CD3 expression and signaling. Although the PRS can bind the SH3.1 domain of the cytosolic adapter Nck, whether the PRS is constitutively available for Nck binding or instead represents a cryptic motif that is exposed via conformational change upon TCR-CD3 engagement (CD3Δc) is currently unresolved. Furthermore, the extent to which a cis-acting CD3ε basic amino acid-rich stretch (BRS), with its unique phosphoinositide-binding capability, might impact PRS accessibility is not clear. In this study, we found that freshly harvested primary thymocytes expressed low to moderate basal levels of Nck-accessible PRS ("open-CD3"), although most TCR-CD3 complexes were inaccessible to Nck ("closed-CD3"). Ag presentation in vivo induced open-CD3, accounting for half of the basal level found in thymocytes from MHC(+) mice. Additional stimulation with either anti-CD3 Abs or peptide-MHC ligands further elevated open-CD3 above basal levels, consistent with a model wherein antigenic engagement induces maximum PRS exposure. We also found that the open-CD3 conformation induced by APCs outlasted the time of ligand occupancy, marking receptors that had been engaged. Finally, CD3ε BRS-phosphoinositide interactions played no role in either adoption of the initial closed-CD3 conformation or induction of open-CD3 by Ab stimulation. Thus, a basal level of open-CD3 is succeeded by a higher, induced level upon TCR-CD3 engagement, involving CD3Δc and prolonged accessibility of the CD3ε PRS to Nck.
Resumo:
It is widely accepted that antibody responses against the human parasitic pathogen Plasmodium falciparum protect the host from the rigors of severe malaria and death. However, there is a continuing need for the development of in vitro correlate assays of immune protection. To this end, the capacity of human monoclonal and polyclonal antibodies in eliciting phagocytosis and parasite growth inhibition via Fcγ receptor-dependent mechanisms was explored. In examining the extent to which sequence diversity in merozoite surface protein 2 (MSP2) results in the evasion of antibody responses, an unexpectedly high level of heterologous function was measured for allele-specific human antibodies. The dependence on Fcγ receptors for opsonic phagocytosis and monocyte-mediated antibody-dependent parasite inhibition was demonstrated by the mutation of the Fc domain of monoclonal antibodies against both MSP2 and a novel vaccine candidate, peptide 27 from the gene PFF0165c. The described flow cytometry-based functional assays are expected to be useful for assessing immunity in naturally infected and vaccinated individuals and for prioritizing among blood-stage antigens for inclusion in blood-stage vaccines.
Resumo:
SAMHD1 has recently been identified as an HIV-1 restriction factor operating in myeloid cells. As a countermeasure, the Vpx accessory protein from HIV-2 and certain lineages of SIV have evolved to antagonize SAMHD1 by inducing its ubiquitin-proteasome-dependent degradation. Here, we show that SAMHD1 experienced strong positive selection episodes during primate evolution that occurred in the Catarrhini ancestral branch prior to the separation between hominoids (gibbons and great apes) and Old World monkeys. The identification of SAMHD1 residues under positive selection led to mapping the Vpx-interaction domain of SAMHD1 to its C-terminal region. Importantly, we found that while SAMHD1 restriction activity toward HIV-1 is evolutionarily maintained, antagonism of SAMHD1 by Vpx is species-specific. The distinct evolutionary signature of SAMHD1 sheds light on the development of its antiviral specificity.
Resumo:
Development of ectodermal appendages, such as hair, teeth, sweat glands, sebaceous glands, and mammary glands, requires the action of the TNF family ligand ectodysplasin A (EDA). Mutations of the X-linked EDA gene cause reduction or absence of many ectodermal appendages and have been identified as a cause of ectodermal dysplasia in humans, mice, dogs, and cattle. We have generated blocking antibodies, raised in Eda-deficient mice, against the conserved, receptor-binding domain of EDA. These antibodies recognize epitopes overlapping the receptor-binding site and prevent EDA from binding and activating EDAR at close to stoichiometric ratios in in vitro binding and activity assays. The antibodies block EDA1 and EDA2 of both mammalian and avian origin and, in vivo, suppress the ability of recombinant Fc-EDA1 to rescue ectodermal dysplasia in Eda-deficient Tabby mice. Moreover, administration of EDA blocking antibodies to pregnant wild type mice induced in developing wild type fetuses a marked and permanent ectodermal dysplasia. These function-blocking anti-EDA antibodies with wide cross-species reactivity will enable study of the developmental and postdevelopmental roles of EDA in a variety of organisms and open the route to therapeutic intervention in conditions in which EDA may be implicated.
Resumo:
The arenavirus Lassa virus (LASV) causes a severe haemorrhagic fever with high mortality in man. The cellular receptor for LASV is dystroglycan (DG). DG is a ubiquitous receptor for extracellular matrix (ECM) proteins, which cooperates with β1 integrins to control cell-matrix interactions. Here, we investigated whether LASV binding to DG triggers signal transduction, mimicking the natural ligands. Engagement of DG by LASV resulted in the recruitment of the adaptor protein Grb2 and the protein kinase MEK1 by the cytoplasmic domain of DG without activating the MEK/ERK pathway, indicating assembly of an inactive signalling complex. LASV binding to cells however affected the activation of the MEK/ERK pathway via α6β1 integrins. The virus-induced perturbation of α6β1 integrin signalling critically depended on high-affinity LASV binding to DG and DG's cytoplasmic domain, indicating that LASV-receptor binding perturbed signalling cross-talk between DG and β1 integrins.
Resumo:
The ability of Mycobacterium tuberculosis to establish a latent infection (LTBI) in humans confounds the treatment of tuberculosis. Consequently, there is a need to discover new therapeutic agents that can kill M. tuberculosis both during active disease and LTBI. The streptomycin-dependent strain of M. tuberculosis, 18b, provides a useful tool for this purpose since upon removal of streptomycin (STR) it enters a non-replicating state that mimics latency both in vitro and in animal models. The 4.41 Mb genome sequence of M. tuberculosis 18b was determined and this revealed the strain to belong to clade 3 of the ancient ancestral lineage of the Beijing family. STR-dependence was attributable to insertion of a single cytosine in the 530 loop of the 16S rRNA and to a single amino acid insertion in the N-terminal domain of initiation factor 3. RNA-seq was used to understand the genetic programme activated upon STR-withdrawal and hence to gain insight into LTBI. This revealed reconfiguration of gene expression and metabolic pathways showing strong similarities between non-replicating 18b and M. tuberculosis residing within macrophages, and with the core stationary phase and microaerophilic responses. The findings of this investigation confirm the validity of 18b as a model for LTBI, and provide insight into both the evolution of tubercle bacilli and the functioning of the ribosome.