3 resultados para Dissipative 2-state System
em Université de Lausanne, Switzerland
Resumo:
BACKGROUND: Previous published studies have shown significant variations in colonoscopy performance, even when medical factors are taken into account. This study aimed to examine the role of nonmedical factors (ie, embodied in health care system design) as possible contributors to variations in colonoscopy performance. METHODS: Patient data from a multicenter observational study conducted between 2000 and 2002 in 21 centers in 11 western countries were used. Variability was captured through 2 performance outcomes (diagnostic yield and colonoscopy withdrawal time), jointly studied as dependent variables, using a multilevel 2-equation system. RESULTS: Results showed that open-access systems and high-volume colonoscopy centers were independently associated with a higher likelihood of detecting significant lesions and longer withdrawal durations. Fee for service (FFS) payment was associated with shorter withdrawal durations, and so had an indirect negative impact on the diagnostic yield. Teaching centers exhibited lower detection rates and longer withdrawal times. CONCLUSIONS: Our results suggest that gatekeeping colonoscopy is likely to miss patients with significant lesions and that developing specialized colonoscopy units is important to improve performance. Results also suggest that FFS may result in a lower quality of care in colonoscopy practice and highlight the fact that longer withdrawal times do not necessarily indicate higher quality in teaching centers.
Resumo:
OBJECTIVES: Lesion detection and characterization in multiple sclerosis (MS) are an essential part of its clinical diagnosis and an important research field. In this pilot study, we applied the recently introduced two inversion-contrast magnetization-prepared rapid gradient echo sequence (MP2RAGE) to patients with early-stage MS.¦MATERIALS AND METHODS: The MP2RAGE is a 3-dimensional (3D) magnetization-prepared rapid gradient echo derivative providing homogeneous T1 weighting and simultaneous T1 mapping. The MP2RAGE performance was compared with that of 2 clinical routine sequences (2D fluid-attenuated inversion recovery [FLAIR] and 3D magnetization-prepared rapid gradient echo [MP-RAGE]) and 2 state-of-the art clinical research sequences (the 3D FLAIR-SPACE [sampling perfection with application-optimized contrasts by using different flip-angle evolutions], a fluid-attenuated variable flip-angle fast spin echo technique, and the 3D double-inversion recovery SPACE). A cohort of 10 early-stage female MS patients (age, 31.6 ± 4.7 years; disease duration, 3.8 ± 1.9 years; median expanded disability status scale score, 1.75) and 10 age- and gender-matched controls were enrolled after approval of the local institutional review board was obtained. Multiple sclerosis lesions were identified and assigned to brain locations and tissue types by two experienced physicians in all 5 contrasts. Subsequently, lesions were manually delineated for comparison and statistical analysis of lesion count, volume and quantitative measures.¦RESULTS AND CONCLUSIONS: The results show that the 3D T1-weighted high-resolution MP2RAGE contrast provides a sensitive means for MS lesion assessment. The additional quantitative T1 relaxation time maps obtained with the MP2RAGE provide further potential diagnostic and prognostic information that could help (a) to better discriminate lesion subtypes and (b) to stage and predict the activity and the evolution of MS. Results also indicate that the T2-weighted double-inversion recovery and FLAIR-SPACE contrasts are attractive complements to the MP2RAGE for lesion detection.
Resumo:
Introduction Medication errors in hospitalsmay occur at any step of the medication process including prescription, transcription, preparation and administration, and may originate with any of the actors involved. Neonatal intensive care units (NICU) take care of extremely frail patients in whom errors could have dramatic consequences. Our objective was to assess the frequency and nature of medication errors in the NICU of a university hospital in order to propose measures for improvement.Materials & Methods The design was that of an observational prospective study over 4 consecutivemonths. All patients receiving C 3drugs were included. For each patient, observations during the different stages were compiled in a computer formulary and compared with the litterature. Setting: The 11-bed NICU of our university hospital.Main outcome measures:(a) Frequency and nature of medication errors in prescription,transcription, preparation and administration.(b) Drugs affected by errors.Results 83 patients were included. 505 prescriptions and transcriptions, 447 preparations and 464 administrations were analyzed. 220 medications errors were observed: 102 (46.4%) at prescription, 25 (11.4%) at transcription, 19 (8.6%) at preparation and 73 (33.2%) at administration. Uncomplete/ambiguous orders (24; 23.5%) were the most common errors observed at prescription, followed by wrong name (21; 20.6%), wrong dose (17; 16.7%) and omission (15; 14.7%). Wrong time (33; 45.2%) and wrong administration technique (31; 42.5%) were the most important medication errors during administration. According to the ATC classification, systemic antibacterials (53; 24.1%) were the most implicated, followed by perfusion solutions (40; 18.2%), respiratory system products (30; 13.6%), and mineral supplements and antithrombotic agents (20; 9.1%).Discussions, Conclusion Proposed recommendations: ? Better teaching of neonatal prescription to medical interns;? Improved prescription form to avoid omissions and ambiguities;? Development of a neonatal drug formulary, including prescription,preparation and administration modalities to reduce errors at different stages;? Presence of a clinical pharmacist in the NICU.Disclosure of Interest None Declared