50 resultados para Direct Simulation Monte Carlo Method
em Université de Lausanne, Switzerland
Resumo:
When decommissioning a nuclear facility it is important to be able to estimate activity levels of potentially radioactive samples and compare with clearance values defined by regulatory authorities. This paper presents a method of calibrating a clearance box monitor based on practical experimental measurements and Monte Carlo simulations. Adjusting the simulation for experimental data obtained using a simple point source permits the computation of absolute calibration factors for more complex geometries with an accuracy of a bit more than 20%. The uncertainty of the calibration factor can be improved to about 10% when the simulation is used relatively, in direct comparison with a measurement performed in the same geometry but with another nuclide. The simulation can also be used to validate the experimental calibration procedure when the sample is supposed to be homogeneous but the calibration factor is derived from a plate phantom. For more realistic geometries, like a small gravel dumpster, Monte Carlo simulation shows that the calibration factor obtained with a larger homogeneous phantom is correct within about 20%, if sample density is taken as the influencing parameter. Finally, simulation can be used to estimate the effect of a contamination hotspot. The research supporting this paper shows that activity could be largely underestimated in the event of a centrally-located hotspot and overestimated for a peripherally-located hotspot if the sample is assumed to be homogeneously contaminated. This demonstrates the usefulness of being able to complement experimental methods with Monte Carlo simulations in order to estimate calibration factors that cannot be directly measured because of a lack of available material or specific geometries.
Resumo:
Intensity-modulated radiotherapy (IMRT) treatment plan verification by comparison with measured data requires having access to the linear accelerator and is time consuming. In this paper, we propose a method for monitor unit (MU) calculation and plan comparison for step and shoot IMRT based on the Monte Carlo code EGSnrc/BEAMnrc. The beamlets of an IMRT treatment plan are individually simulated using Monte Carlo and converted into absorbed dose to water per MU. The dose of the whole treatment can be expressed through a linear matrix equation of the MU and dose per MU of every beamlet. Due to the positivity of the absorbed dose and MU values, this equation is solved for the MU values using a non-negative least-squares fit optimization algorithm (NNLS). The Monte Carlo plan is formed by multiplying the Monte Carlo absorbed dose to water per MU with the Monte Carlo/NNLS MU. Several treatment plan localizations calculated with a commercial treatment planning system (TPS) are compared with the proposed method for validation. The Monte Carlo/NNLS MUs are close to the ones calculated by the TPS and lead to a treatment dose distribution which is clinically equivalent to the one calculated by the TPS. This procedure can be used as an IMRT QA and further development could allow this technique to be used for other radiotherapy techniques like tomotherapy or volumetric modulated arc therapy.
Resumo:
To make a comprehensive evaluation of organ-specific out-of-field doses using Monte Carlo (MC) simulations for different breast cancer irradiation techniques and to compare results with a commercial treatment planning system (TPS). Three breast radiotherapy techniques using 6MV tangential photon beams were compared: (a) 2DRT (open rectangular fields), (b) 3DCRT (conformal wedged fields), and (c) hybrid IMRT (open conformal+modulated fields). Over 35 organs were contoured in a whole-body CT scan and organ-specific dose distributions were determined with MC and the TPS. Large differences in out-of-field doses were observed between MC and TPS calculations, even for organs close to the target volume such as the heart, the lungs and the contralateral breast (up to 70% difference). MC simulations showed that a large fraction of the out-of-field dose comes from the out-of-field head scatter fluence (>40%) which is not adequately modeled by the TPS. Based on MC simulations, the 3DCRT technique using external wedges yielded significantly higher doses (up to a factor 4-5 in the pelvis) than the 2DRT and the hybrid IMRT techniques which yielded similar out-of-field doses. In sharp contrast to popular belief, the IMRT technique investigated here does not increase the out-of-field dose compared to conventional techniques and may offer the most optimal plan. The 3DCRT technique with external wedges yields the largest out-of-field doses. For accurate out-of-field dose assessment, a commercial TPS should not be used, even for organs near the target volume (contralateral breast, lungs, heart).
Resumo:
This chapter presents possible uses and examples of Monte Carlo methods for the evaluation of uncertainties in the field of radionuclide metrology. The method is already well documented in GUM supplement 1, but here we present a more restrictive approach, where the quantities of interest calculated by the Monte Carlo method are estimators of the expectation and standard deviation of the measurand, and the Monte Carlo method is used to propagate the uncertainties of the input parameters through the measurement model. This approach is illustrated by an example of the activity calibration of a 103Pd source by liquid scintillation counting and the calculation of a linear regression on experimental data points. An electronic supplement presents some algorithms which may be used to generate random numbers with various statistical distributions, for the implementation of this Monte Carlo calculation method.
Resumo:
Astrocytes have recently become a major center of interest in neurochemistry with the discoveries on their major role in brain energy metabolism. An interesting way to probe this glial contribution is given by in vivo (13) C NMR spectroscopy coupled with the infusion labeled glial-specific substrate, such as acetate. In this study, we infused alpha-chloralose anesthetized rats with [2-(13) C]acetate and followed the dynamics of the fractional enrichment (FE) in the positions C4 and C3 of glutamate and glutamine with high sensitivity, using (1) H-[(13) C] magnetic resonance spectroscopy (MRS) at 14.1T. Applying a two-compartment mathematical model to the measured time courses yielded a glial tricarboxylic acid (TCA) cycle rate (Vg ) of 0.27 ± 0.02 μmol/g/min and a glutamatergic neurotransmission rate (VNT ) of 0.15 ± 0.01 μmol/g/min. Glial oxidative ATP metabolism thus accounts for 38% of total oxidative metabolism measured by NMR. Pyruvate carboxylase (VPC ) was 0.09 ± 0.01 μmol/g/min, corresponding to 37% of the glial glutamine synthesis rate. The glial and neuronal transmitochondrial fluxes (Vx (g) and Vx (n) ) were of the same order of magnitude as the respective TCA cycle fluxes. In addition, we estimated a glial glutamate pool size of 0.6 ± 0.1 μmol/g. The effect of spectral data quality on the fluxes estimates was analyzed by Monte Carlo simulations. In this (13) C-acetate labeling study, we propose a refined two-compartment analysis of brain energy metabolism based on (13) C turnover curves of acetate, glutamate and glutamine measured with state of the art in vivo dynamic MRS at high magnetic field in rats, enabling a deeper understanding of the specific role of glial cells in brain oxidative metabolism. In addition, the robustness of the metabolic fluxes determination relative to MRS data quality was carefully studied.
Resumo:
Dose kernel convolution (DK) methods have been proposed to speed up absorbed dose calculations in molecular radionuclide therapy. Our aim was to evaluate the impact of tissue density heterogeneities (TDH) on dosimetry when using a DK method and to propose a simple density-correction method. METHODS: This study has been conducted on 3 clinical cases: case 1, non-Hodgkin lymphoma treated with (131)I-tositumomab; case 2, a neuroendocrine tumor treatment simulated with (177)Lu-peptides; and case 3, hepatocellular carcinoma treated with (90)Y-microspheres. Absorbed dose calculations were performed using a direct Monte Carlo approach accounting for TDH (3D-RD), and a DK approach (VoxelDose, or VD). For each individual voxel, the VD absorbed dose, D(VD), calculated assuming uniform density, was corrected for density, giving D(VDd). The average 3D-RD absorbed dose values, D(3DRD), were compared with D(VD) and D(VDd), using the relative difference Δ(VD/3DRD). At the voxel level, density-binned Δ(VD/3DRD) and Δ(VDd/3DRD) were plotted against ρ and fitted with a linear regression. RESULTS: The D(VD) calculations showed a good agreement with D(3DRD). Δ(VD/3DRD) was less than 3.5%, except for the tumor of case 1 (5.9%) and the renal cortex of case 2 (5.6%). At the voxel level, the Δ(VD/3DRD) range was 0%-14% for cases 1 and 2, and -3% to 7% for case 3. All 3 cases showed a linear relationship between voxel bin-averaged Δ(VD/3DRD) and density, ρ: case 1 (Δ = -0.56ρ + 0.62, R(2) = 0.93), case 2 (Δ = -0.91ρ + 0.96, R(2) = 0.99), and case 3 (Δ = -0.69ρ + 0.72, R(2) = 0.91). The density correction improved the agreement of the DK method with the Monte Carlo approach (Δ(VDd/3DRD) < 1.1%), but with a lesser extent for the tumor of case 1 (3.1%). At the voxel level, the Δ(VDd/3DRD) range decreased for the 3 clinical cases (case 1, -1% to 4%; case 2, -0.5% to 1.5%, and -1.5% to 2%). No more linear regression existed for cases 2 and 3, contrary to case 1 (Δ = 0.41ρ - 0.38, R(2) = 0.88) although the slope in case 1 was less pronounced. CONCLUSION: This study shows a small influence of TDH in the abdominal region for 3 representative clinical cases. A simple density-correction method was proposed and improved the comparison in the absorbed dose calculations when using our voxel S value implementation.
Resumo:
Time-lapse geophysical measurements are widely used to monitor the movement of water and solutes through the subsurface. Yet commonly used deterministic least squares inversions typically suffer from relatively poor mass recovery, spread overestimation, and limited ability to appropriately estimate nonlinear model uncertainty. We describe herein a novel inversion methodology designed to reconstruct the three-dimensional distribution of a tracer anomaly from geophysical data and provide consistent uncertainty estimates using Markov chain Monte Carlo simulation. Posterior sampling is made tractable by using a lower-dimensional model space related both to the Legendre moments of the plume and to predefined morphological constraints. Benchmark results using cross-hole ground-penetrating radar travel times measurements during two synthetic water tracer application experiments involving increasingly complex plume geometries show that the proposed method not only conserves mass but also provides better estimates of plume morphology and posterior model uncertainty than deterministic inversion results.
Resumo:
Whole-body counting is a technique of choice for assessing the intake of gamma-emitting radionuclides. An appropriate calibration is necessary, which is done either by experimental measurement or by Monte Carlo (MC) calculation. The aim of this work was to validate a MC model for calibrating whole-body counters (WBCs) by comparing the results of computations with measurements performed on an anthropomorphic phantom and to investigate the effect of a change in phantom's position on the WBC counting sensitivity. GEANT MC code was used for the calculations, and an IGOR phantom loaded with several types of radionuclides was used for the experimental measurements. The results show a reasonable agreement between measurements and MC computation. A 1-cm error in phantom positioning changes the activity estimation by >2%. Considering that a 5-cm deviation of the positioning of the phantom may occur in a realistic counting scenario, this implies that the uncertainty of the activity measured by a WBC is ∼10-20%.
Resumo:
Geophysical techniques can help to bridge the inherent gap with regard to spatial resolution and the range of coverage that plagues classical hydrological methods. This has lead to the emergence of the new and rapidly growing field of hydrogeophysics. Given the differing sensitivities of various geophysical techniques to hydrologically relevant parameters and their inherent trade-off between resolution and range the fundamental usefulness of multi-method hydrogeophysical surveys for reducing uncertainties in data analysis and interpretation is widely accepted. A major challenge arising from such endeavors is the quantitative integration of the resulting vast and diverse database in order to obtain a unified model of the probed subsurface region that is internally consistent with all available data. To address this problem, we have developed a strategy towards hydrogeophysical data integration based on Monte-Carlo-type conditional stochastic simulation that we consider to be particularly suitable for local-scale studies characterized by high-resolution and high-quality datasets. Monte-Carlo-based optimization techniques are flexible and versatile, allow for accounting for a wide variety of data and constraints of differing resolution and hardness and thus have the potential of providing, in a geostatistical sense, highly detailed and realistic models of the pertinent target parameter distributions. Compared to more conventional approaches of this kind, our approach provides significant advancements in the way that the larger-scale deterministic information resolved by the hydrogeophysical data can be accounted for, which represents an inherently problematic, and as of yet unresolved, aspect of Monte-Carlo-type conditional simulation techniques. We present the results of applying our algorithm to the integration of porosity log and tomographic crosshole georadar data to generate stochastic realizations of the local-scale porosity structure. Our procedure is first tested on pertinent synthetic data and then applied to corresponding field data collected at the Boise Hydrogeophysical Research Site near Boise, Idaho, USA.
Resumo:
BACKGROUND: Lipid-lowering therapy is costly but effective at reducing coronary heart disease (CHD) risk. OBJECTIVE: To assess the cost-effectiveness and public health impact of Adult Treatment Panel III (ATP III) guidelines and compare with a range of risk- and age-based alternative strategies. DESIGN: The CHD Policy Model, a Markov-type cost-effectiveness model. DATA SOURCES: National surveys (1999 to 2004), vital statistics (2000), the Framingham Heart Study (1948 to 2000), other published data, and a direct survey of statin costs (2008). TARGET POPULATION: U.S. population age 35 to 85 years. Time Horizon: 2010 to 2040. PERSPECTIVE: Health care system. INTERVENTION: Lowering of low-density lipoprotein cholesterol with HMG-CoA reductase inhibitors (statins). OUTCOME MEASURE: Incremental cost-effectiveness. RESULTS OF BASE-CASE ANALYSIS: Full adherence to ATP III primary prevention guidelines would require starting (9.7 million) or intensifying (1.4 million) statin therapy for 11.1 million adults and would prevent 20,000 myocardial infarctions and 10,000 CHD deaths per year at an annual net cost of $3.6 billion ($42,000/QALY) if low-intensity statins cost $2.11 per pill. The ATP III guidelines would be preferred over alternative strategies if society is willing to pay $50,000/QALY and statins cost $1.54 to $2.21 per pill. At higher statin costs, ATP III is not cost-effective; at lower costs, more liberal statin-prescribing strategies would be preferred; and at costs less than $0.10 per pill, treating all persons with low-density lipoprotein cholesterol levels greater than 3.4 mmol/L (>130 mg/dL) would yield net cost savings. RESULTS OF SENSITIVITY ANALYSIS: Results are sensitive to the assumptions that LDL cholesterol becomes less important as a risk factor with increasing age and that little disutility results from taking a pill every day. LIMITATION: Randomized trial evidence for statin effectiveness is not available for all subgroups. CONCLUSION: The ATP III guidelines are relatively cost-effective and would have a large public health impact if implemented fully in the United States. Alternate strategies may be preferred, however, depending on the cost of statins and how much society is willing to pay for better health outcomes. FUNDING: Flight Attendants' Medical Research Institute and the Swanson Family Fund. The Framingham Heart Study and Framingham Offspring Study are conducted and supported by the National Heart, Lung, and Blood Institute.
Resumo:
We perform direct numerical simulations of drainage by solving Navier- Stokes equations in the pore space and employing the Volume Of Fluid (VOF) method to track the evolution of the fluid-fluid interface. After demonstrating that the method is able to deal with large viscosity contrasts and to model the transition from stable flow to viscous fingering, we focus on the definition of macroscopic capillary pressure. When the fluids are at rest, the difference between inlet and outlet pressures and the difference between the intrinsic phase average pressure coincide with the capillary pressure. However, when the fluids are in motion these quantities are dominated by viscous forces. In this case, only a definition based on the variation of the interfacial energy provides an accurate measure of the macroscopic capillary pressure and allows separating the viscous from the capillary pressure components.
Resumo:
Gel electrophoresis allows one to separate knotted DNA (nicked circular) of equal length according to the knot type. At low electric fields, complex knots, being more compact, drift faster than simpler knots. Recent experiments have shown that the drift velocity dependence on the knot type is inverted when changing from low to high electric fields. We present a computer simulation on a lattice of a closed, knotted, charged DNA chain drifting in an external electric field in a topologically restricted medium. Using a Monte Carlo algorithm, the dependence of the electrophoretic migration of the DNA molecules on the knot type and on the electric field intensity is investigated. The results are in qualitative and quantitative agreement with electrophoretic experiments done under conditions of low and high electric fields.
Resumo:
Photopolymerization is commonly used in a broad range of bioapplications, such as drug delivery, tissue engineering, and surgical implants, where liquid materials are injected and then hardened by means of illumination to create a solid polymer network. However, photopolymerization using a probe, e.g., needle guiding both the liquid and the curing illumination, has not been thoroughly investigated. We present a Monte Carlo model that takes into account the dynamic absorption and scattering parameters as well as solid-liquid boundaries of the photopolymer to yield the shape and volume of minimally invasively injected, photopolymerized hydrogels. In the first part of the article, our model is validated using a set of well-known poly(ethylene glycol) dimethacrylate hydrogels showing an excellent agreement between simulated and experimental volume-growth-rates. In the second part, in situ experimental results and simulations for photopolymerization in tissue cavities are presented. It was found that a cavity with a volume of 152 mm3 can be photopolymerized from the output of a 0.28-mm2 fiber by adding scattering lipid particles while only a volume of 38 mm3 (25%) was achieved without particles. The proposed model provides a simple and robust method to solve complex photopolymerization problems, where the dimension of the light source is much smaller than the volume of the photopolymerizable hydrogel.
Resumo:
The ground-penetrating radar (GPR) geophysical method has the potential to provide valuable information on the hydraulic properties of the vadose zone because of its strong sensitivity to soil water content. In particular, recent evidence has suggested that the stochastic inversion of crosshole GPR traveltime data can allow for a significant reduction in uncertainty regarding subsurface van Genuchten-Mualem (VGM) parameters. Much of the previous work on the stochastic estimation of VGM parameters from crosshole GPR data has considered the case of steady-state infiltration conditions, which represent only a small fraction of practically relevant scenarios. We explored in detail the dynamic infiltration case, specifically examining to what extent time-lapse crosshole GPR traveltimes, measured during a forced infiltration experiment at the Arreneas field site in Denmark, could help to quantify VGM parameters and their uncertainties in a layered medium, as well as the corresponding soil hydraulic properties. We used a Bayesian Markov-chain-Monte-Carlo inversion approach. We first explored the advantages and limitations of this approach with regard to a realistic synthetic example before applying it to field measurements. In our analysis, we also considered different degrees of prior information. Our findings indicate that the stochastic inversion of the time-lapse GPR data does indeed allow for a substantial refinement in the inferred posterior VGM parameter distributions compared with the corresponding priors, which in turn significantly improves knowledge of soil hydraulic properties. Overall, the results obtained clearly demonstrate the value of the information contained in time-lapse GPR data for characterizing vadose zone dynamics.
Resumo:
Résumé : La radiothérapie par modulation d'intensité (IMRT) est une technique de traitement qui utilise des faisceaux dont la fluence de rayonnement est modulée. L'IMRT, largement utilisée dans les pays industrialisés, permet d'atteindre une meilleure homogénéité de la dose à l'intérieur du volume cible et de réduire la dose aux organes à risque. Une méthode usuelle pour réaliser pratiquement la modulation des faisceaux est de sommer de petits faisceaux (segments) qui ont la même incidence. Cette technique est appelée IMRT step-and-shoot. Dans le contexte clinique, il est nécessaire de vérifier les plans de traitement des patients avant la première irradiation. Cette question n'est toujours pas résolue de manière satisfaisante. En effet, un calcul indépendant des unités moniteur (représentatif de la pondération des chaque segment) ne peut pas être réalisé pour les traitements IMRT step-and-shoot, car les poids des segments ne sont pas connus à priori, mais calculés au moment de la planification inverse. Par ailleurs, la vérification des plans de traitement par comparaison avec des mesures prend du temps et ne restitue pas la géométrie exacte du traitement. Dans ce travail, une méthode indépendante de calcul des plans de traitement IMRT step-and-shoot est décrite. Cette méthode est basée sur le code Monte Carlo EGSnrc/BEAMnrc, dont la modélisation de la tête de l'accélérateur linéaire a été validée dans une large gamme de situations. Les segments d'un plan de traitement IMRT sont simulés individuellement dans la géométrie exacte du traitement. Ensuite, les distributions de dose sont converties en dose absorbée dans l'eau par unité moniteur. La dose totale du traitement dans chaque élément de volume du patient (voxel) peut être exprimée comme une équation matricielle linéaire des unités moniteur et de la dose par unité moniteur de chacun des faisceaux. La résolution de cette équation est effectuée par l'inversion d'une matrice à l'aide de l'algorithme dit Non-Negative Least Square fit (NNLS). L'ensemble des voxels contenus dans le volume patient ne pouvant être utilisés dans le calcul pour des raisons de limitations informatiques, plusieurs possibilités de sélection ont été testées. Le meilleur choix consiste à utiliser les voxels contenus dans le Volume Cible de Planification (PTV). La méthode proposée dans ce travail a été testée avec huit cas cliniques représentatifs des traitements habituels de radiothérapie. Les unités moniteur obtenues conduisent à des distributions de dose globale cliniquement équivalentes à celles issues du logiciel de planification des traitements. Ainsi, cette méthode indépendante de calcul des unités moniteur pour l'IMRT step-andshootest validée pour une utilisation clinique. Par analogie, il serait possible d'envisager d'appliquer une méthode similaire pour d'autres modalités de traitement comme par exemple la tomothérapie. Abstract : Intensity Modulated RadioTherapy (IMRT) is a treatment technique that uses modulated beam fluence. IMRT is now widespread in more advanced countries, due to its improvement of dose conformation around target volume, and its ability to lower doses to organs at risk in complex clinical cases. One way to carry out beam modulation is to sum smaller beams (beamlets) with the same incidence. This technique is called step-and-shoot IMRT. In a clinical context, it is necessary to verify treatment plans before the first irradiation. IMRT Plan verification is still an issue for this technique. Independent monitor unit calculation (representative of the weight of each beamlet) can indeed not be performed for IMRT step-and-shoot, because beamlet weights are not known a priori, but calculated by inverse planning. Besides, treatment plan verification by comparison with measured data is time consuming and performed in a simple geometry, usually in a cubic water phantom with all machine angles set to zero. In this work, an independent method for monitor unit calculation for step-and-shoot IMRT is described. This method is based on the Monte Carlo code EGSnrc/BEAMnrc. The Monte Carlo model of the head of the linear accelerator is validated by comparison of simulated and measured dose distributions in a large range of situations. The beamlets of an IMRT treatment plan are calculated individually by Monte Carlo, in the exact geometry of the treatment. Then, the dose distributions of the beamlets are converted in absorbed dose to water per monitor unit. The dose of the whole treatment in each volume element (voxel) can be expressed through a linear matrix equation of the monitor units and dose per monitor unit of every beamlets. This equation is solved by a Non-Negative Least Sqvare fif algorithm (NNLS). However, not every voxels inside the patient volume can be used in order to solve this equation, because of computer limitations. Several ways of voxel selection have been tested and the best choice consists in using voxels inside the Planning Target Volume (PTV). The method presented in this work was tested with eight clinical cases, which were representative of usual radiotherapy treatments. The monitor units obtained lead to clinically equivalent global dose distributions. Thus, this independent monitor unit calculation method for step-and-shoot IMRT is validated and can therefore be used in a clinical routine. It would be possible to consider applying a similar method for other treatment modalities, such as for instance tomotherapy or volumetric modulated arc therapy.