15 resultados para Differential cross sections

em Université de Lausanne, Switzerland


Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND:: Mechanical forces play an important role in tissue neovascularization and are a constituent part of modern wound therapies. The mechanisms by which vacuum assisted closure (VAC) modulates wound angiogenesis are still largely unknown. OBJECTIVE:: To investigate how VAC treatment affects wound hypoxia and related profiles of angiogenic factors as well as to identify the anatomical characteristics of the resultant, newly formed vessels. METHODS:: Wound neovascularization was evaluated by morphometric analysis of CD31-stained wound cross-sections as well as by corrosion casting analysis. Wound hypoxia and mRNA expression of HIF-1α and associated angiogenic factors were evaluated by pimonidazole hydrochloride staining and quantitative reverse transcription-polymerase chain reaction (RT-PCR), respectively. Vascular endothelial growth factor (VEGF) protein levels were determined by western blot analysis. RESULTS:: VAC-treated wounds were characterized by the formation of elongated vessels aligned in parallel and consistent with physiologically function, compared to occlusive dressing control wounds that showed formation of tortuous, disoriented vessels. Moreover, VAC-treated wounds displayed a well-oxygenated wound bed, with hypoxia limited to the direct proximity of the VAC-foam interface, where higher VEGF levels were found. By contrast, occlusive dressing control wounds showed generalized hypoxia, with associated accumulation of HIF-1α and related angiogenic factors. CONCLUSIONS:: The combination of established gradients of hypoxia and VEGF expression along with mechanical forces exerted by VAC therapy was associated with the formation of more physiological blood vessels compared to occlusive dressing control wounds. These morphological changes are likely a necessary condition for better wound healing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Among various advantages, their small size makes model organisms preferred subjects of investigation. Yet, even in model systems detailed analysis of numerous developmental processes at cellular level is severely hampered by their scale. For instance, secondary growth of Arabidopsis hypocotyls creates a radial pattern of highly specialized tissues that comprises several thousand cells starting from a few dozen. This dynamic process is difficult to follow because of its scale and because it can only be investigated invasively, precluding comprehensive understanding of the cell proliferation, differentiation, and patterning events involved. To overcome such limitation, we established an automated quantitative histology approach. We acquired hypocotyl cross-sections from tiled high-resolution images and extracted their information content using custom high-throughput image processing and segmentation. Coupled with automated cell type recognition through machine learning, we could establish a cellular resolution atlas that reveals vascular morphodynamics during secondary growth, for example equidistant phloem pole formation. DOI: http://dx.doi.org/10.7554/eLife.01567.001.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sirt3 is a mitochondrial NAD(+)-dependent deacetylase that governs mitochondrial metabolism and reactive oxygen species homeostasis. Sirt3 deficiency has been reported to accelerate the development of the metabolic syndrome. However, the role of Sirt3 in atherosclerosis remains enigmatic. We aimed to investigate whether Sirt3 deficiency affects atherosclerosis, plaque vulnerability, and metabolic homeostasis. Low-density lipoprotein receptor knockout (LDLR(-/-)) and LDLR/Sirt3 double-knockout (Sirt3(-/-)LDLR(-/-)) mice were fed a high-cholesterol diet (1.25 % w/w) for 12 weeks. Atherosclerosis was assessed en face in thoraco-abdominal aortae and in cross sections of aortic roots. Sirt3 deletion led to hepatic mitochondrial protein hyperacetylation. Unexpectedly, though plasma malondialdehyde levels were elevated in Sirt3-deficient mice, Sirt3 deletion affected neither plaque burden nor features of plaque vulnerability (i.e., fibrous cap thickness and necrotic core diameter). Likewise, plaque macrophage and T cell infiltration as well as endothelial activation remained unaltered. Electron microscopy of aortic walls revealed no difference in mitochondrial microarchitecture between both groups. Interestingly, loss of Sirt3 was associated with accelerated weight gain and an impaired capacity to cope with rapid changes in nutrient supply as assessed by indirect calorimetry. Serum lipid levels and glucose tolerance were unaffected by Sirt3 deletion in LDLR(-/-) mice. Sirt3 deficiency does not affect atherosclerosis in LDLR(-/-) mice. However, Sirt3 controls systemic levels of oxidative stress, limits expedited weight gain, and allows rapid metabolic adaptation. Thus, Sirt3 may contribute to postponing cardiovascular risk factor development.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent research has examined the factors controlling the geometrical configuration of bifurcations, determined the range of stability conditions for a number of bifurcation types and assessed the impact of perturbations on bifurcation evolution. However, the flow division process and the parameters that influence flow and sediment partitioning are still poorly characterized. To identify and isolate these parameters, three-dimensional velocities were measured at 11 cross-sections in a fixed-walled experimental bifurcation. Water surface gradients were controlled, and systematically varied, using a weir in each distributary. As may be expected, the steepest distributary conveyed the most discharge ( was dominant) while the mildest distributary conveyed the least discharge ( was subordinate). A zone of water surface super-elevation was co-located with the bifurcation in symmetric cases or displaced into the subordinate branch in asymmetric cases. Downstream of a relatively acute-angled bifurcation, primary velocity cores were near to the water surface and against the inner banks, with near-bed zones of lower primary velocity at the outer banks. Downstream of an obtuse-angled bifurcation, velocity cores were initially at the outer banks, with near-bed zones of lower velocities at the inner banks, but patterns soon reverted to match the acute-angled case. A single secondary flow cell was generated in each distributary, with water flowing inwards at the water surface and outwards at the bed. Circulation was relatively enhanced within the subordinate branch, which may help explain why subordinate distributaries remain open, may play a role in determining the size of commonly-observed topographic features, and may thus exert some control on the stability of asymmetric bifurcations. Further, because larger values of circulation result from larger gradient disadvantages, the length of confluence-diffluence units in braided rivers or between diffluences within delta distributary networks may vary depending upon flow structures inherited from upstream and whether, and how, they are fed by dominant or subordinate distributaries. Copyright (C) 2011 John Wiley & Sons, Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The eastern part of the Cordillera Occidental of Ecuador comprises thick buoyant oceanic plateaus associated with island-arc tholeiites and subduction-related calc-alkaline series, accreted to the Ecuadorian Continental Margin from Late Cretaceous to Eocene times. One of these plateau sequences, the Guaranda Oceanic Plateau is considered as remnant of the Caribbean-Colombian Oceanic Province (CCOP) accreted to the Ecuadorian Margin in the Maastrichtien. Samples studied in this paper were taken from four cross-sections through two arc-sequences in the northern part of the Cordillera Occidental of Ecuador, dated as (Rio Cala) or ascribed to (Macuchi) the Late Cretaceous and one arc-like sequence in the Chogon-Colonche Cordillera (Las Orquideas). These three island-arcs can clearly be identified and rest conformably on the CCOP. In all four localities, basalts with abundant large clinopyroxene phenocrysts can be found, mimicking a picritic or ankaramitic facies. This mineralogical particularity, although not uncommon in island arc lavas, hints at a contribution of the CCOP in the genesis of these island arc rocks. The complete petrological and geochemical study of these rocks reveals that some have a primitive island-arc nature (MgO values range from 6 to 11 wt.%). Studied samples display marked Nb, Ta and Ti negative anomalies relative to the adjacent elements in the spidergrams characteristic of subductionrelated magmatism. These rocks are LREE-enriched and their clinopyroxenes show a tholeiitic affinity (FeO(1)-TiO(2) enrichment and CaO depletion from core to rim within a single crystal). The four sampled cross-sections through the island-arc sequences display homogeneous initial Nd, and Pb isotope ratios that suggest a unique mantellic source for these rocks resulting from the mixing of three components: an East-Pacific MORB end-member, an enriched pelagic sediment component, and a HIMU component carried by the CCOP. Indeed, the ankaramite and Mg-basalt sequences that form part of the Caribbean-Colombian Oceanic Plateau are radiogenically enriched in (206)Pb/(204)Pb and (207)Pb/(204)Pb and contain a HIMU component similar to that observed in the Gorgona basalts and Galapagos lavas. The subduction zone that generated the Late Cretaceous arcs occurred far from the continental margin, in an oceanic environment. This implies that no terrigenous detrital sediments interacted with the source at this period. Thus, the enriched component can only result from the melting of subducted pelagic sediments. We have thus defined the East-Pacific MORB, enriched (cherts, pelagic sediments) and HIMU components in an attempt to constrain and model the genesis of the studied island-arc magmatism, using a compilation of carefully selected isotopic data from literature according to rock age and paleogeographic location at the time of arc edification. Tripolar mixing models reveal that proportions of 12-15 wt.% of the HIMU component, 7-15 wt.% of the pelagic sediment end-member and 70-75 wt.% of an East-pacific MORB end-member are needed to explain the measured isotope ratios. These surprisingly high proportions of the HIMU/CCOP component could be explained by the young age of the oceanic plateau (5-15 Ma) during the Late Cretaceous arc emplacement. The CCOP, basement of these arc sequences, was probably still hot and easily assimilated at the island-arc lava source. (C) 2008 Elsevier Ltd. All rights reserved,

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Complex wounds pose a major challenge in reconstructive and trauma surgery. Several approaches to increase the healing process have been proposed in the last decades. In this study we study the mechanism of action of the Vacuum Assisted Closure device in diabetic wounds. Methods: Full-thickness wounds were excised in diabetic mice and treated with the VAC device or its isolated components: an occlusive dressing (OD) alone, subathmospheric pressure at 125 mm Hg (Suction), and a polyurethane foam without (Foam) and with (Foamc) downward compression of approximately 125 mm Hg. The last goups were treated with either the complete VAC device (VAC) or with a silicne interface that alows fluid removel (Mepithel-VAC). The effects of the treatment modes on the wound surface were quantified by a two-dimensional immunohistochemical staging system based on vasculature, as defined by blood vessel density (CD31) and cell proliferation (defined by ki67 positivity), 7 days post wounding. Finite element modelling was used to predict wound surface deformation under dressing modes and cross sections of in situ fixed tissues were used to measure actual microstrain. Results: The foam-wound interface of the Vacuum Assisted Closure device causes significant wound stains (60%) causing a deformation of the single cell level leading to a profound upregulation of cell proliferation (4-fold) and angiogenisis (2.2-fold) compared to OD treated wounds. Polyurethane foam exposure itself causes a frather unspecific angiogenic response (Foamc, 2 - fold, Foam, 2.2 - fold) without changes of the cell proliferation rate of the wound bed. Suction alone without a specific interface does not have an effect on meassured parameters, showing similar results to untreated wounds. A perforated silicone interface caused a significant lower microdeforamtion of the wound bed correlating to changes of the wound tissues. Conclusion: The Vacuum Assisted Closure device induce significanttissue growth in diabetic wounds. The wound foam interface under suction causes profound macrodeformation that stimulates tissue growth by angiogenesis and cell proliferation. It needs to be taken in consideration that in the clinical setting different wound types may profit from different elements of this suction device.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Suction-based wound healing devices with open-pore foam interfaces are widely used to treat complex tissue defects. The impact of changes in physicochemical parameters of the wound interfaces has not been investigated. METHODS: Full-thickness wounds in diabetic mice were treated with occlusive dressing or a suction device with a polyurethane foam interface varying in mean pore size diameter. Wound surface deformation on day 2 was measured on fixed tissues. Histologic cross-sections were analyzed for granulation tissue thickness (hematoxylin and eosin), myofibroblast density (α-smooth muscle actin), blood vessel density (platelet endothelial cell adhesion molecule-1), and cell proliferation (Ki67) on day 7. RESULTS: Polyurethane foam-induced wound surface deformation increased with polyurethane foam pore diameter: 15 percent (small pore size), 60 percent (medium pore size), and 150 percent (large pore size). The extent of wound strain correlated with granulation tissue thickness that increased 1.7-fold in small pore size foam-treated wounds, 2.5-fold in medium pore size foam-treated wounds, and 4.9-fold in large pore size foam-treated wounds (p < 0.05) compared with wounds treated with an occlusive dressing. All polyurethane foams increased the number of myofibroblasts over occlusive dressing, with maximal presence in large pore size foam-treated wounds compared with all other groups (p < 0.05). CONCLUSIONS: The pore size of the interface material of suction devices has a significant impact on the wound healing response. Larger pores increased wound surface strain, tissue growth, and transformation of contractile cells. Modification of the pore size is a powerful approach for meeting biological needs of specific wounds.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This review paper deals with the geology of the NW Indian Himalaya situated in the states of Jammu and Kashmir, Himachal Pradesh and Garhwal. The models and mechanisms discussed, concerning the tectonic and metamorphic history of the Himalayan range, are based on a new compilation of a geological map and cross sections, as well as on paleomagnetic, stratigraphic, petrologic, structural, metamorphic, thermobarometric and radiometric data. The protolith of the Himalayan range, the North Indian flexural passive margin of the Neo-Tethys ocean, consists of a Lower Proterozoic basement, intruded by 1.8-1.9 Ga bimodal magmatites, overlain by a horizontally stratified sequence of Upper Proterozoic to Paleocene sediments, intruded by 470-500 Ma old Ordovician mainly peraluminous s-type granites, Carboniferous tholeiitic to alkaline basalts and intruded and overlain by Permian tholeiitic continental flood basalts. No elements of the Archaen crystalline basement of the South Indian shield have been identified in the Himalayan range. Deformation of the Himalayan accretionary wedge resulted from the continental collision of India and Asia beginning some 65-55 Ma ago, after the NE-directed underthrusting of the Neo-Tethys oceanic crust below Asia and the formation of the Andean-type 103-50 (-41) Ma old Ladakh batholith to the north of the Indus Suture. Cylindrical in geometry, the Himalayan range consists, from NE to SW, from older to younger tectonic elements, of the following zones: 1) The 25 km wide Ladakh batholith and the Asian mantle wedge form the backstop of the growing Himalayan accretionary wedge. 2) The Indus Suture zone is composed of obducted slices of the oceanic crust, island arcs, like the Dras arc, overlain by Late Cretaceous fore arc basin sediments and the mainly Paleocene to Early Eocene and Miocene epi-sutural intra-continental Indus molasse. 3) The Late Paleocene to Eocene North Himalayan nappe stack, up to 40 km thick prior to erosion, consists of Upper Proterozoic to Paleocene rocks, with the eclogitic and coesite bearing Tso Morari gneiss nappe at its base. It includes a branch of the Central Himalayan detachment, the 22-18 Ma old Zanskar Shear zone that is intruded and dated by the 22 Ma Gumburanjun leucogranite; it reactivates the frontal thrusts of the SW-verging North Himalayan nappes. 4) The late Eocene-Miocene SW-directed High Himalayan or ``Crystalline'' nappe comprises Upper Proterozoic to Mesozoic sediments and Ordovician granites, identical to those of the North Himalayan nappes. The Main Central thrust at its base was created in a zone of Eocene to Early Oligocene anatexis by ductile detachment of the subducted Indian crust, below the pre-existing 25-35 km thick NE-directed Shikar Beh and SW-directed North Himalayan nappe stacks. 5) The late Miocene Lesser Himalayan thrust with the Main Boundary Thrust at its base consists of early Proterozoic to Cambrian rocks intruded by 1.8-1.9 Ga bimodal magmatites. The Subhimalaya is a thrust wedge of Himalayan fore deep basin sediments, composed of the Early Eocene marine Subathu marls and sandstones as well as the up to 8'000 m-thick Miocene to recent Ganga molasse, a coarsening upwards sequence of shales, sandstones and conglomerates. The active frontal thrust is covered by the sediments of the Indus-Ganga plains.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of this work was to evaluate the ability of 80 MHz ultrasonography to differentiate intra-retinal layers and quantitatively assess photoreceptor dystrophy in small animal models. Four groups of 10 RCS rats each (five dystrophic and five controls) were explored at 25, 35, 45 and 55 days post-natal (PN). A series of retina cross-sections were obtained ex vivo from outside intact eyes using an 80 MHz three-dimensional ultrasound backscatter microscope (20-microm-axial resolution). Ultrasound features of normal retina were correlated to those of corresponding histology and thickness measurements of photoreceptor segment and nuclear layers were performed on all groups. To show the ability of 80 MHz ultrasonography to distinguish the retinal degeneration in vivo, one RCS rat was explored at 25 and 55 days post-natal. Ultrasound image of normal retina displayed four distinct layers marked by reflections at neurites/nuclei interfaces and permitted to differentiate the photoreceptor segment and nuclear layers. The backscatter level from the retina was shown to be related to the size, density and organization of the intra-layer structure. Ultrasound thickness measurements highly correlated with histologic measurements. A thinning (p<0.05) of outer nuclear layer (ONL) was detected over time for controls and was thought to be assigned to retina maturation. Retinal degeneration started at PN35 and resulted in a more pronounced ONL thinning (p<0.05) over time. ONL degeneration was accompanied by segment layer thickening (p<0.05) at PN35 and thinning thereafter. These changes may indicate accumulation of outer segment debris at PN35 then progressive destruction. In vivo images of rat intra-retinal structure showed the ability of the method to distinguish the photoreceptor layer changes. Our results indicate that 80 MHz ultrasonography reveals intra-retinal layers and is sensitive to age and degenerative changes of photoreceptors. This technique has great potential to follow-up retinal dystrophy and therapeutic effects in vivo.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Depth-averaged velocities and unit discharges within a 30 km reach of one of the world's largest rivers, the Rio Parana, Argentina, were simulated using three hydrodynamic models with different process representations: a reduced complexity (RC) model that neglects most of the physics governing fluid flow, a two-dimensional model based on the shallow water equations, and a three-dimensional model based on the Reynolds-averaged Navier-Stokes equations. Row characteristics simulated using all three models were compared with data obtained by acoustic Doppler current profiler surveys at four cross sections within the study reach. This analysis demonstrates that, surprisingly, the performance of the RC model is generally equal to, and in some instances better than, that of the physics based models in terms of the statistical agreement between simulated and measured flow properties. In addition, in contrast to previous applications of RC models, the present study demonstrates that the RC model can successfully predict measured flow velocities. The strong performance of the RC model reflects, in part, the simplicity of the depth-averaged mean flow patterns within the study reach and the dominant role of channel-scale topographic features in controlling the flow dynamics. Moreover, the very low water surface slopes that typify large sand-bed rivers enable flow depths to be estimated reliably in the RC model using a simple fixed-lid planar water surface approximation. This approach overcomes a major problem encountered in the application of RC models in environments characterised by shallow flows and steep bed gradients. The RC model is four orders of magnitude faster than the physics based models when performing steady-state hydrodynamic calculations. However, the iterative nature of the RC model calculations implies a reduction in computational efficiency relative to some other RC models. A further implication of this is that, if used to simulate channel morphodynamics, the present RC model may offer only a marginal advantage in terms of computational efficiency over approaches based on the shallow water equations. These observations illustrate the trade off between model realism and efficiency that is a key consideration in RC modelling. Moreover, this outcome highlights a need to rethink the use of RC morphodynamic models in fluvial geomorphology and to move away from existing grid-based approaches, such as the popular cellular automata (CA) models, that remain essentially reductionist in nature. In the case of the world's largest sand-bed rivers, this might be achieved by implementing the RC model outlined here as one element within a hierarchical modelling framework that would enable computationally efficient simulation of the morphodynamics of large rivers over millennial time scales. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

With the aim of understanding the mechanisms that control the metamorphic transition from the CH4- to the H2O-(CO2)-dominated fluid zone in the Helvetic domain of the Central Alps of Switzerland, fluid inclusions in quartz, illite ``crystallinity'' index, vitrinite reflectance, and the stable isotope compositions of vein and whole rock minerals and fluids trapped in quartz were investigated along four cross-sections. Increasing temperature during prograde metamorphism led to the formation of dry gas by hydrocarbon cracking in the CH4-zone. Fluid immiscibility in the H2O-CH4-(CO2)-NaCl system resulted in cogenetic, CH4- and H2O-dominated fluid inclusions. In the CH4-zone, fluids were trapped at temperatures <= 270 +/- 5 degrees C. The end of the CH4-zone is markedby a sudden increase of CO2 content in the gas phase of fluid inclusions. At temperatures > 270 +/- 5 degrees C, in the H2O-zone, the total amount of volatiles within the fluid decreased below 1 mol% with no immiscibility. This resulted m total homogenization temperatures of H2O-(CO2-CH4)-NaCl inclusions below 180 degrees C. Hydrogen isotope compositions of methane in fluid inclusion have delta D values of less than -100 parts per thousand in the CH4-zone, typical for an origin through cracking of higher hydrocarbons, but where the methane has not equilibrated with the pore water. delta D values of fluid inclusion water are around -40 parts per thousand., in isotopic equilibrium with phyllosilicates of the whole rocks. Within the CH4 to H2O(CO2) transition zone, delta D(H2O) values in fluid inclusions decrease to -130 parts per thousand interpreted to reflect the contribution of deuterium depleted water from methane oxidation. In the H2O-zone, delta D(H2O) values increase again towards an average of -30 parts per thousand which is again consistent with isotopic equilibrium with host-rock phyllosilicates. delta C-13 values of methane in fluid inclusions from the CH4-zone are around -27 parts per thousand in isotopic equilibrium with calcite in veins and whole rocks. The delta C-13(CH4) values decrease to less than -35 parts per thousand at the transition to the H2O-zone and are no longer in equilibrium with the carbonates in the whole rocks. delta C-13 values of CO, are variable but too low to be in equilibrium with the wall rock fluids, compatible with a contribution of CO2 from closed system oxidation of methane. Differences in isotopic composition between host-rock and Alpine fissure carbonate are generally small, suggesting that the amount of CO2 produced by oxidation of methane was small compared to the C-budget in the rocks and local pore fluids were buffered by the wall rocks during precipitation of calcite within the fissures. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Austroalpine nappe systems in SE-Switzerland and N-Italy preserve remnants of the Adriatic rifted margin. Based on new maps and cross-sections, we suggest that the complex structure of the Campo, Grosina/Languard, and Bernina nappes is inherited largely from Jurassic rifting. We propose a classification of the Austroalpine domain into Upper, Middle and Lower Austroalpine nappes that is new because it is based primarily on the rift-related Jurassic structure and paleogeography of these nappes. Based on the Alpine structures and pre-Alpine, rift-related geometry of the Lower (Bernina) and Middle (Campo, Grosina/Languard) Austroalpine nappes, we restore these nappes to their original positions along the former margin, as a means of understanding the formation and emplacement of the nappes during initial reactivation of the Alpine Tethyan margin. The Campo and Grosina/Languard nappes can be interpreted as remnants of a former necking zone that comprised pre-rift upper and middle crust. These nappes were juxtaposed with the Mesozoic cover of the Bernina nappe during Jurassic rifting. We find evidence for low-angle detachment faults and extensional allochthons in the Bernina nappe similar to those previously described in the Err nappe and explain their role during subsequent reactivation. Our observations reveal a strong control of rift-related structures during the subsequent Alpine reactivation on all scales of the former distal margin. Two zones of intense deformation, referred to as the Albula-Zebru and Lunghin-Mortirolo movement zones, have been reactivated during Alpine deformation and cannot be described as simple monophase faults or shear zones. We propose a tectonic model for the Austroalpine nappe systems that link inherited, rift-related structures with present-day Alpine structures. In conclusion, we believe that apart from the direct regional implications, the results of this paper are of general interest in understanding the control of rift structures during reactivation of distal-rifted margins.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Les plantes sont essentielles pour les sociétés humaines. Notre alimentation quotidienne, les matériaux de constructions et les sources énergétiques dérivent de la biomasse végétale. En revanche, la compréhension des multiples aspects développementaux des plantes est encore peu exploitée et représente un sujet de recherche majeur pour la science. L'émergence des technologies à haut débit pour le séquençage de génome à grande échelle ou l'imagerie de haute résolution permet à présent de produire des quantités énormes d'information. L'analyse informatique est une façon d'intégrer ces données et de réduire la complexité apparente vers une échelle d'abstraction appropriée, dont la finalité est de fournir des perspectives de recherches ciblées. Ceci représente la raison première de cette thèse. En d'autres termes, nous appliquons des méthodes descriptives et prédictives combinées à des simulations numériques afin d'apporter des solutions originales à des problèmes relatifs à la morphogénèse à l'échelle de la cellule et de l'organe. Nous nous sommes fixés parmi les objectifs principaux de cette thèse d'élucider de quelle manière l'interaction croisée des phytohormones auxine et brassinosteroïdes (BRs) détermine la croissance de la cellule dans la racine du méristème apical d'Arabidopsis thaliana, l'organisme modèle de référence pour les études moléculaires en plantes. Pour reconstruire le réseau de signalement cellulaire, nous avons extrait de la littérature les informations pertinentes concernant les relations entre les protéines impliquées dans la transduction des signaux hormonaux. Le réseau a ensuite été modélisé en utilisant un formalisme logique et qualitatif pour pallier l'absence de données quantitatives. Tout d'abord, Les résultats ont permis de confirmer que l'auxine et les BRs agissent en synergie pour contrôler la croissance de la cellule, puis, d'expliquer des observations phénotypiques paradoxales et au final, de mettre à jour une interaction clef entre deux protéines dans la maintenance du méristème de la racine. Une étude ultérieure chez la plante modèle Brachypodium dystachion (Brachypo- dium) a révélé l'ajustement du réseau d'interaction croisée entre auxine et éthylène par rapport à Arabidopsis. Chez ce dernier, interférer avec la biosynthèse de l'auxine mène à la formation d'une racine courte. Néanmoins, nous avons isolé chez Brachypodium un mutant hypomorphique dans la biosynthèse de l'auxine qui affiche une racine plus longue. Nous avons alors conduit une analyse morphométrique qui a confirmé que des cellules plus anisotropique (plus fines et longues) sont à l'origine de ce phénotype racinaire. Des analyses plus approfondies ont démontré que la différence phénotypique entre Brachypodium et Arabidopsis s'explique par une inversion de la fonction régulatrice dans la relation entre le réseau de signalisation par l'éthylène et la biosynthèse de l'auxine. L'analyse morphométrique utilisée dans l'étude précédente exploite le pipeline de traitement d'image de notre méthode d'histologie quantitative. Pendant la croissance secondaire, la symétrie bilatérale de l'hypocotyle est remplacée par une symétrie radiale et une organisation concentrique des tissus constitutifs. Ces tissus sont initialement composés d'une douzaine de cellules mais peuvent aisément atteindre des dizaines de milliers dans les derniers stades du développement. Cette échelle dépasse largement le seuil d'investigation par les moyens dits 'traditionnels' comme l'imagerie directe de tissus en profondeur. L'étude de ce système pendant cette phase de développement ne peut se faire qu'en réalisant des coupes fines de l'organe, ce qui empêche une compréhension des phénomènes cellulaires dynamiques sous-jacents. Nous y avons remédié en proposant une stratégie originale nommée, histologie quantitative. De fait, nous avons extrait l'information contenue dans des images de très haute résolution de sections transverses d'hypocotyles en utilisant un pipeline d'analyse et de segmentation d'image à grande échelle. Nous l'avons ensuite combiné avec un algorithme de reconnaissance automatique des cellules. Cet outil nous a permis de réaliser une description quantitative de la progression de la croissance secondaire révélant des schémas développementales non-apparents avec une inspection visuelle classique. La formation de pôle de phloèmes en structure répétée et espacée entre eux d'une longueur constante illustre les bénéfices de notre approche. Par ailleurs, l'exploitation approfondie de ces résultats a montré un changement de croissance anisotropique des cellules du cambium et du phloème qui semble en phase avec l'expansion du xylème. Combinant des outils génétiques et de la modélisation biomécanique, nous avons démontré que seule la croissance plus rapide des tissus internes peut produire une réorientation de l'axe de croissance anisotropique des tissus périphériques. Cette prédiction a été confirmée par le calcul du ratio des taux de croissance du xylème et du phloème au cours de développement secondaire ; des ratios élevés sont effectivement observés et concomitant à l'établissement progressif et tangentiel du cambium. Ces résultats suggèrent un mécanisme d'auto-organisation établi par un gradient de division méristématique qui génèrent une distribution de contraintes mécaniques. Ceci réoriente la croissance anisotropique des tissus périphériques pour supporter la croissance secondaire. - Plants are essential for human society, because our daily food, construction materials and sustainable energy are derived from plant biomass. Yet, despite this importance, the multiple developmental aspects of plants are still poorly understood and represent a major challenge for science. With the emergence of high throughput devices for genome sequencing and high-resolution imaging, data has never been so easy to collect, generating huge amounts of information. Computational analysis is one way to integrate those data and to decrease the apparent complexity towards an appropriate scale of abstraction with the aim to eventually provide new answers and direct further research perspectives. This is the motivation behind this thesis work, i.e. the application of descriptive and predictive analytics combined with computational modeling to answer problems that revolve around morphogenesis at the subcellular and organ scale. One of the goals of this thesis is to elucidate how the auxin-brassinosteroid phytohormone interaction determines the cell growth in the root apical meristem of Arabidopsis thaliana (Arabidopsis), the plant model of reference for molecular studies. The pertinent information about signaling protein relationships was obtained through the literature to reconstruct the entire hormonal crosstalk. Due to a lack of quantitative information, we employed a qualitative modeling formalism. This work permitted to confirm the synergistic effect of the hormonal crosstalk on cell elongation, to explain some of our paradoxical mutant phenotypes and to predict a novel interaction between the BREVIS RADIX (BRX) protein and the transcription factor MONOPTEROS (MP),which turned out to be critical for the maintenance of the root meristem. On the same subcellular scale, another study in the monocot model Brachypodium dystachion (Brachypodium) revealed an alternative wiring of auxin-ethylene crosstalk as compared to Arabidopsis. In the latter, increasing interference with auxin biosynthesis results in progressively shorter roots. By contrast, a hypomorphic Brachypodium mutant isolated in this study in an enzyme of the auxin biosynthesis pathway displayed a dramatically longer seminal root. Our morphometric analysis confirmed that more anisotropic cells (thinner and longer) are principally responsible for the mutant root phenotype. Further characterization pointed towards an inverted regulatory logic in the relation between ethylene signaling and auxin biosynthesis in Brachypodium as compared to Arabidopsis, which explains the phenotypic discrepancy. Finally, the morphometric analysis of hypocotyl secondary growth that we applied in this study was performed with the image-processing pipeline of our quantitative histology method. During its secondary growth, the hypocotyl reorganizes its primary bilateral symmetry to a radial symmetry of highly specialized tissues comprising several thousand cells, starting with a few dozens. However, such a scale only permits observations in thin cross-sections, severely hampering a comprehensive analysis of the morphodynamics involved. Our quantitative histology strategy overcomes this limitation. We acquired hypocotyl cross-sections from tiled high-resolution images and extracted their information content using custom high-throughput image processing and segmentation. Coupled with an automated cell type recognition algorithm, it allows precise quantitative characterization of vascular development and reveals developmental patterns that were not evident from visual inspection, for example the steady interspace distance of the phloem poles. Further analyses indicated a change in growth anisotropy of cambial and phloem cells, which appeared in phase with the expansion of xylem. Combining genetic tools and computational modeling, we showed that the reorientation of growth anisotropy axis of peripheral tissue layers only occurs when the growth rate of central tissue is higher than the peripheral one. This was confirmed by the calculation of the ratio of the growth rate xylem to phloem throughout secondary growth. High ratios are indeed observed and concomitant with the homogenization of cambium anisotropy. These results suggest a self-organization mechanism, promoted by a gradient of division in the cambium that generates a pattern of mechanical constraints. This, in turn, reorients the growth anisotropy of peripheral tissues to sustain the secondary growth.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Manival near Grenoble (French Prealps) is a very active debris-flow torrent equipped with a large sediment trap (25 000 m3) protecting an urbanized alluvial fan from debris-flows. We began monitoring the sediment budget of the catchment controlled by the trap in Spring 2009. Terrestrial laser scanner is used for monitoring topographic changes in a small gully, the main channel, and the sediment trap. In the main channel, 39 cross-sections are surveyed after every event. Three periods of intense geomorphic activity are documented here. The first was induced by a convective storm in August 2009 which triggered a debris-flow that deposited ~1,800 m3 of sediment in the trap. The debris-flow originated in the upper reach of the main channel and our observations showed that sediment outputs were entirely supplied by channel scouring. Hillslope debris-flows were initiated on talus slopes, as revealed by terrestrial LiDAR resurveys; however they were disconnected to the main channel. The second and third periods of geomorphic activity were induced by long duration and low intensity rainfall events in September and October 2009 which generate small flow events with intense bedload transport. These events contribute to recharge the debris-flow channel with sediments by depositing important gravel dunes propagating from headwaters. The total recharge in the torrent subsequent to bedload transport events was estimated at 34% of the sediment erosion induced by the August debris-flow.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tissue engineering is a popular topic in peripheral nerve repair. Combining a nerve conduit with supporting adipose-derived cells could offer an opportunity to prevent time-consuming Schwann cell culture or the use of an autograft with its donor site morbidity and eventually improve clinical outcome. The aim of this study was to provide a broad overview over promising transplantable cells under equal experimental conditions over a long-term period. A 10-mm gap in the sciatic nerve of female Sprague-Dawley rats (7 groups of 7 animals, 8 weeks old) was bridged through a biodegradable fibrin conduit filled with rat adipose-derived stem cells (rASCs), differentiated rASCs (drASCs), human (h)ASCs from the superficial and deep abdominal layer, human stromal vascular fraction (SVF), or rat Schwann cells, respectively. As a control, we resutured a nerve segment as an autograft. Long-term evaluation was carried out after 12 weeks comprising walking track, morphometric, and MRI analyses. The sciatic functional index was calculated. Cross sections of the nerve, proximal, distal, and in between the two sutures, were analyzed for re-/myelination and axon count. Gastrocnemius muscle weights were compared. MRI proved biodegradation of the conduit. Differentiated rat ASCs performed significantly better than undifferentiated rASCs with less muscle atrophy and superior functional results. Superficial hASCs supported regeneration better than deep hASCs, in line with published in vitro data. The best regeneration potential was achieved by the drASC group when compared with other adipose tissue-derived cells. Considering the ease of procedure from harvesting to transplanting, we conclude that comparison of promising cells for nerve regeneration revealed that particularly differentiated ASCs could be a clinically translatable route toward new methods to enhance peripheral nerve repair.