2 resultados para Different temperatures

em Université de Lausanne, Switzerland


Relevância:

60.00% 60.00%

Publicador:

Resumo:

It has been predicted on theorerical grounds (Sibly & Calow, 1983; Taylor & Williams, 1984) that optimal offspring size should be highly sensitive to juvenile growth and survival rates. To test such models, genetically-identical individuals of Simicephalus vetulus were reared at different temperatures and monitored for offspring size and juvenile growth rate. As adult size correlates negatively with temperature, an analysis of covariance was performed to separate the effects of temperature and maternal size. The result is that offspring size indeed correlates negatively with juvenile growth rate. Comparisons are made with field observation of several authors on seasonal variation of offspring size and alternative explanations are discussed. It is concluded that present experiments support the prediction of the theoretical models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To directly assess the binding of exogenous peptides to cell surface-associated MHC class I molecules at the single cell level, we examined the possibility of combining the use of biotinylated peptide derivatives with an immunofluorescence detection system based on flow cytometry. Various biotinylated derivatives of the adenovirus 5 early region 1A peptide 234-243, an antigenic peptide recognized by CTL in the context of H-2Db, were first screened in functional assays for their ability to bind efficiently to Db molecules on living cells. Suitable peptide derivatives were then tested for their ability to generate positive fluorescence signals upon addition of phycoerythrin-labeled streptavidin to peptide derivative-bearing cells. Strong fluorescent staining of Db-expressing cells was achieved after incubation with a peptide derivative containing a biotin group at the C-terminus. Competition experiments using the unmodified parental peptide as well as unrelated peptides known to bind to Kd, Kb, or Db, respectively, established that binding of the biotinylated peptide to living cells was Db-specific. By using Con A blasts derived from different H-2 congenic mouse strains, it could be shown that the biotinylated peptide bound only to Db among > 20 class I alleles tested. Moreover, binding of the biotinylated peptide to cells expressing the Dbm13 and Dbm14 mutant molecules was drastically reduced compared to Db. Binding of the biotinylated peptide to freshly isolated Db+ cells was readily detectable, allowing direct assessment of the relative amount of peptide bound to distinct lymphocyte subpopulations by three-color flow cytometry. While minor differences between peripheral T and B cells could be documented, thymocytes were found to differ widely in their peptide binding activity. In all cases, these differences correlated positively with the differential expression of Db at the cell surface. Finally, kinetic studies at different temperatures strongly suggested that the biotinylated peptide first associated with Db molecules available constitutively at the cell surface and then with newly arrived Db molecules.