4 resultados para Design optimization

em Université de Lausanne, Switzerland


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Locating new wind farms is of crucial importance for energy policies of the next decade. To select the new location, an accurate picture of the wind fields is necessary. However, characterizing wind fields is a difficult task, since the phenomenon is highly nonlinear and related to complex topographical features. In this paper, we propose both a nonparametric model to estimate wind speed at different time instants and a procedure to discover underrepresented topographic conditions, where new measuring stations could be added. Compared to space filling techniques, this last approach privileges optimization of the output space, thus locating new potential measuring sites through the uncertainty of the model itself.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Failure to detect a species in an area where it is present is a major source of error in biological surveys. We assessed whether it is possible to optimize single-visit biological monitoring surveys of highly dynamic freshwater ecosystems by framing them a priori within a particular period of time. Alternatively, we also searched for the optimal number of visits and when they should be conducted. We developed single-species occupancy models to estimate the monthly probability of detection of pond-breeding amphibians during a four-year monitoring program. Our results revealed that detection probability was species-specific and changed among sampling visits within a breeding season and also among breeding seasons. Thereby, the optimization of biological surveys with minimal survey effort (a single visit) is not feasible as it proves impossible to select a priori an adequate sampling period that remains robust across years. Alternatively, a two-survey combination at the beginning of the sampling season yielded optimal results and constituted an acceptable compromise between sampling efficacy and survey effort. Our study provides evidence of the variability and uncertainty that likely affects the efficacy of monitoring surveys, highlighting the need of repeated sampling in both ecological studies and conservation management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: Many retinal degenerations result from defective retina-specific gene expressions. Thus, it is important to understand how the expression of a photoreceptor-specific gene is regulated in vivo in order to achieve successful gene therapy. The present study aims to design an AAV2/8 vector that can regulate the transcript level in a physiological manner to replace missing PDE6b in Rd1 and Rd10 mice. In previous studies (Ogieta, et al., 2000), the short 5' flanking sequence of the human PDE6b gene (350 bp) was shown to be photoreceptor-specific in transgenic mice. However, the efficiency and specificity of the 5' flanking region of the human PDE6b was not investigated in the context of gene therapy during retinal degeneration. In this study, two different sequences of the 5' flanking region of the human PDE6b gene were studied as promoter elements and their expression will be tested in wild type and diseased retinas (Rd 10 mice).Methods: Two 5' flanking fragments of the human PDE6b gene: (-93 to +53 (150 bp) and -297 to +53 (350 bp)) were cloned in different plasmids in order to check their expression in vitro and in vivo by constructing an AAV2/8 vector. These elements drove the activity of either luciferase (pGL3 plasmids) or EGFP. jetPEI transfection in Y 79 cells was used to evaluate gene expression through luciferase activity. Constructs encoding EGFP under the control of the two promoters were performed in AAV2.1-93 (or 297)-EGFP plasmids to produce AAV2/8 vectors.Results: When pGL3-93 (150 bp) or pGL3-297 (350 bp) were transfected in the Y-79 cells, the smaller fragment (150 bp) showed higher gene expression compared to the 350 bp element and to the SV40 control, as previously reported. The 350 bp drove similar levels of expression when compared to the SV40 promoter. In view of these results, the fragments (150 bp or 350 bp) were integrated into the AAV2.1-EGFP plasmid to produce AAV2/8 vector, and we are currently evaluating the efficiency and specificity of the produced constructs in vivo in normal and diseased retinas.Conclusions: Comparisons of these vectors with vectors bearing ubiquitous promoters should reveal which construct is the most suitable to drive efficient and specific gene expression in diseased retinas in order to restore a normal function on the long term.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

3 Summary 3. 1 English The pharmaceutical industry has been facing several challenges during the last years, and the optimization of their drug discovery pipeline is believed to be the only viable solution. High-throughput techniques do participate actively to this optimization, especially when complemented by computational approaches aiming at rationalizing the enormous amount of information that they can produce. In siiico techniques, such as virtual screening or rational drug design, are now routinely used to guide drug discovery. Both heavily rely on the prediction of the molecular interaction (docking) occurring between drug-like molecules and a therapeutically relevant target. Several softwares are available to this end, but despite the very promising picture drawn in most benchmarks, they still hold several hidden weaknesses. As pointed out in several recent reviews, the docking problem is far from being solved, and there is now a need for methods able to identify binding modes with a high accuracy, which is essential to reliably compute the binding free energy of the ligand. This quantity is directly linked to its affinity and can be related to its biological activity. Accurate docking algorithms are thus critical for both the discovery and the rational optimization of new drugs. In this thesis, a new docking software aiming at this goal is presented, EADock. It uses a hybrid evolutionary algorithm with two fitness functions, in combination with a sophisticated management of the diversity. EADock is interfaced with .the CHARMM package for energy calculations and coordinate handling. A validation was carried out on 37 crystallized protein-ligand complexes featuring 11 different proteins. The search space was defined as a sphere of 15 R around the center of mass of the ligand position in the crystal structure, and conversely to other benchmarks, our algorithms was fed with optimized ligand positions up to 10 A root mean square deviation 2MSD) from the crystal structure. This validation illustrates the efficiency of our sampling heuristic, as correct binding modes, defined by a RMSD to the crystal structure lower than 2 A, were identified and ranked first for 68% of the complexes. The success rate increases to 78% when considering the five best-ranked clusters, and 92% when all clusters present in the last generation are taken into account. Most failures in this benchmark could be explained by the presence of crystal contacts in the experimental structure. EADock has been used to understand molecular interactions involved in the regulation of the Na,K ATPase, and in the activation of the nuclear hormone peroxisome proliferatoractivated receptors a (PPARa). It also helped to understand the action of common pollutants (phthalates) on PPARy, and the impact of biotransformations of the anticancer drug Imatinib (Gleevec®) on its binding mode to the Bcr-Abl tyrosine kinase. Finally, a fragment-based rational drug design approach using EADock was developed, and led to the successful design of new peptidic ligands for the a5ß1 integrin, and for the human PPARa. In both cases, the designed peptides presented activities comparable to that of well-established ligands such as the anticancer drug Cilengitide and Wy14,643, respectively. 3.2 French Les récentes difficultés de l'industrie pharmaceutique ne semblent pouvoir se résoudre que par l'optimisation de leur processus de développement de médicaments. Cette dernière implique de plus en plus. de techniques dites "haut-débit", particulièrement efficaces lorsqu'elles sont couplées aux outils informatiques permettant de gérer la masse de données produite. Désormais, les approches in silico telles que le criblage virtuel ou la conception rationnelle de nouvelles molécules sont utilisées couramment. Toutes deux reposent sur la capacité à prédire les détails de l'interaction moléculaire entre une molécule ressemblant à un principe actif (PA) et une protéine cible ayant un intérêt thérapeutique. Les comparatifs de logiciels s'attaquant à cette prédiction sont flatteurs, mais plusieurs problèmes subsistent. La littérature récente tend à remettre en cause leur fiabilité, affirmant l'émergence .d'un besoin pour des approches plus précises du mode d'interaction. Cette précision est essentielle au calcul de l'énergie libre de liaison, qui est directement liée à l'affinité du PA potentiel pour la protéine cible, et indirectement liée à son activité biologique. Une prédiction précise est d'une importance toute particulière pour la découverte et l'optimisation de nouvelles molécules actives. Cette thèse présente un nouveau logiciel, EADock, mettant en avant une telle précision. Cet algorithme évolutionnaire hybride utilise deux pressions de sélections, combinées à une gestion de la diversité sophistiquée. EADock repose sur CHARMM pour les calculs d'énergie et la gestion des coordonnées atomiques. Sa validation a été effectuée sur 37 complexes protéine-ligand cristallisés, incluant 11 protéines différentes. L'espace de recherche a été étendu à une sphère de 151 de rayon autour du centre de masse du ligand cristallisé, et contrairement aux comparatifs habituels, l'algorithme est parti de solutions optimisées présentant un RMSD jusqu'à 10 R par rapport à la structure cristalline. Cette validation a permis de mettre en évidence l'efficacité de notre heuristique de recherche car des modes d'interactions présentant un RMSD inférieur à 2 R par rapport à la structure cristalline ont été classés premier pour 68% des complexes. Lorsque les cinq meilleures solutions sont prises en compte, le taux de succès grimpe à 78%, et 92% lorsque la totalité de la dernière génération est prise en compte. La plupart des erreurs de prédiction sont imputables à la présence de contacts cristallins. Depuis, EADock a été utilisé pour comprendre les mécanismes moléculaires impliqués dans la régulation de la Na,K ATPase et dans l'activation du peroxisome proliferatoractivated receptor a (PPARa). Il a également permis de décrire l'interaction de polluants couramment rencontrés sur PPARy, ainsi que l'influence de la métabolisation de l'Imatinib (PA anticancéreux) sur la fixation à la kinase Bcr-Abl. Une approche basée sur la prédiction des interactions de fragments moléculaires avec protéine cible est également proposée. Elle a permis la découverte de nouveaux ligands peptidiques de PPARa et de l'intégrine a5ß1. Dans les deux cas, l'activité de ces nouveaux peptides est comparable à celles de ligands bien établis, comme le Wy14,643 pour le premier, et le Cilengitide (PA anticancéreux) pour la seconde.