17 resultados para Design and Formative Studies of AIED Systems
em Université de Lausanne, Switzerland
Resumo:
BACKGROUND AND PURPOSE: Stroke registries are valuable tools for obtaining information about stroke epidemiology and management. The Acute STroke Registry and Analysis of Lausanne (ASTRAL) prospectively collects epidemiological, clinical, laboratory and multimodal brain imaging data of acute ischemic stroke patients in the Centre Hospitalier Universitaire Vaudois (CHUV). Here, we provide design and methods used to create ASTRAL and present baseline data of our patients (2003 to 2008). METHODS: All consecutive patients admitted to CHUV between January 1, 2003 and December 31, 2008 with acute ischemic stroke within 24 hours of symptom onset were included in ASTRAL. Patients arriving beyond 24 hours, with transient ischemic attack, intracerebral hemorrhage, subarachnoidal hemorrhage, or cerebral sinus venous thrombosis, were excluded. Recurrent ischemic strokes were registered as new events. RESULTS: Between 2003 and 2008, 1633 patients and 1742 events were registered in ASTRAL. There was a preponderance of males, even in the elderly. Cardioembolic stroke was the most frequent type of stroke. Most strokes were of minor severity (National Institute of Health Stroke Scale [NIHSS] score ≤ 4 in 40.8% of patients). Cardioembolic stroke and dissections presented with the most severe clinical picture. There was a significant number of patients with unknown onset stroke, including wake-up stroke (n=568, 33.1%). Median time from last-well time to hospital arrival was 142 minutes for known onset and 759 minutes for unknown-onset stroke. The rate of intravenous or intraarterial thrombolysis between 2003 and 2008 increased from 10.8% to 20.8% in patients admitted within 24 hours of last-well time. Acute brain imaging was performed in 1695 patients (97.3%) within 24 hours. In 1358 patients (78%) who underwent acute computed tomography angiography, 717 patients (52.8%) had significant abnormalities. Of the 1068 supratentorial stroke patients who underwent acute perfusion computed tomography (61.3%), focal hypoperfusion was demonstrated in 786 patients (73.6%). CONCLUSIONS: This hospital-based prospective registry of consecutive acute ischemic strokes incorporates demographic, clinical, metabolic, acute perfusion, and arterial imaging. It is characterized by a high proportion of minor and unknown-onset strokes, short onset-to-admission time for known-onset patients, rapidly increasing thrombolysis rates, and significant vascular and perfusion imaging abnormalities in the majority of patients.
Resumo:
Non-structural protein 2 (NS2) plays an important role in hepatitis C virus (HCV) assembly, but neither the exact contribution of this protein to the assembly process nor its complete structure are known. In this study we used a combination of genetic, biochemical and structural methods to decipher the role of NS2 in infectious virus particle formation. A large panel of NS2 mutations targeting the N-terminal membrane binding region was generated. They were selected based on a membrane topology model that we established by determining the NMR structures of N-terminal NS2 transmembrane segments. Mutants affected in virion assembly, but not RNA replication, were selected for pseudoreversion in cell culture. Rescue mutations restoring virus assembly to various degrees emerged in E2, p7, NS3 and NS2 itself arguing for an interaction between these proteins. To confirm this assumption we developed a fully functional JFH1 genome expressing an N-terminally tagged NS2 demonstrating efficient pull-down of NS2 with p7, E2 and NS3 and, to a lower extent, NS5A. Several of the mutations blocking virus assembly disrupted some of these interactions that were restored to various degrees by those pseudoreversions that also restored assembly. Immunofluorescence analyses revealed a time-dependent NS2 colocalization with E2 at sites close to lipid droplets (LDs) together with NS3 and NS5A. Importantly, NS2 of a mutant defective in assembly abrogates NS2 colocalization around LDs with E2 and NS3, which is restored by a pseudoreversion in p7, whereas NS5A is recruited to LDs in an NS2-independent manner. In conclusion, our results suggest that NS2 orchestrates HCV particle formation by participation in multiple protein-protein interactions required for their recruitment to assembly sites in close proximity of LDs.
Resumo:
Polyhydroxyalkanoates (PHAs) are polyesters of hydroxyacids naturally synthesized in bacteria as a carbon reserve. PHAs have properties of biodegradable thermoplastics and elastomers and their synthesis in crop plants is seen as an attractive system for the sustained production of large amounts of polymers at low cost. A variety of PHAs having different physical properties have now been synthesized in a number of transgenic plants, including Arabidopsis thaliana, rape and corn. This has been accomplished through the creation of novel metabolic pathways either in the cytoplasm, plastid or peroxisome of plant cells. Beyond its impact in biotechnology, PHA production in plants can also be used to study some fundamental aspects of plant metabolism. Synthesis of PHA can be used both as an indicator and a modulator of the carbon flux to pathways competing for common substrates, such as acetyl-coenzyme A in fatty acid biosynthesis or 3-hydroxyacyl-coenzyme A in fatty acid degradation. Synthesis of PHAs in plant peroxisome has been used to demonstrate changes in the flux of fatty acids to the beta-oxidation cycle in transgenic plants and mutants affected in lipid biosynthesis, as well as to study the pathway of degradation of unusual fatty acids.
Resumo:
Chemosensation is the detection of chemical signals in the environment that enable an animal to make informed decisions about food choice, mate preference or predator detection. Dissecting the molecular and neural mechanisms by which animals detect chemical cues is an important goal towards understanding how they interact with the environment. An attractive system to dissect the mechanisms of chemosensation is the olfactory system. One of the most-investigated olfactory systems is that of Drosophila melanogaster, a model organism that is amenable to a powerful combination of genetic and physiological analyses. Embedded within the antennal olfactory organ of Drosophila is an unusual sensory structure called the sacculus. The sacculus is comprised of three distinct chambers, each lined with several sensilla housing two to three neurons. Previous morphological, anatomical and surgical studies of sacculus neurons have implicated sacculus neurons in chemosensation, hygrosensation and/or thermosensation. While a subset of sacculus neurons have been physiologically characterised as temperature sensors, the role of this organ has remained largely mysterious, due to its inaccessibility to peripheral electrophysiological analysis. Recently a new family of olfactory receptors, the lonotropic Receptors (IRs), was identified. Five IRs are expressed in sacculus neurons providing the first selective molecular markers for these cells. In this thesis I describe the molecular, physiological and anatomical characterisation of these neurons. Genetic labelling of specific populations of sacculus neurons with anatomical (CD8:GFP) reporters has identified neurons in sacculus chambers I and II express IR40a+IR93a together with their co- receptor IR25a, while neurons in chamber III express IR64a with its co-receptor IR8a. Both these sets of neurons project to two distinct glomeruli in the antennal lobe; IR40a neurons project to the column and arm, IR64a neurons project to DC4 and DP1m. Through a live optical imaging screen I showed that these neurons are indeed olfactory and IR64a neurons recognise acidic ligands, while IR40a neurons recognise amine ligands. IR40a and IR64a neurons are in fact composed of anatomically and physiologically distinct subpopulations, strongly implying the existence of other factors that define their functional properties. My thesis identifies the sacculus as a specialised olfactory organ capable of detecting acids and bases, which are of widespread importance to insects. The data from my thesis along with data from other labs show the sacculus is composed of different populations of olfactory sensory neurons and thermosensory neurons. Comparative genomic analysis of sacculus IRs across insects reveals them to be among the most conserved of this receptor repertoire, suggesting that the sacculus represents an evolutionarily ancient insect olfactory acid-base sensor. - La détection des produits chimiques se trouvant dans l'environnement (perception chimiosensorielle) permet à un animal de choisir sa nourriture, son partenaire ou encore d'identifier ses prédateurs. Décortiquer les mécanismes moléculaires et neuronaux grâce auxquels les animaux détectent ces signaux chimiques permet de comprendre comment ces animaux interagissent avec leur environnement. Un système intéressant pour décortiquer ces mécanismes de perception chimiosensorielle est le système olfactif, de la drosophile (Drosophila melanogaster), aussi appelée mouche du vinaigre. C'est un animal modèle très utile grâce à la combinaison d'outils génétiques puissants et d'analyses physiologiques facilement réalisables. Dans l'antenne de la drosophile, qui est l'organe olfactif principal de cet animal, se trouve une structure appelée sacculus. Celui-ci est composé de trois chambres distinctes, chacune comprenant plusieurs sensilles à l'intérieur desquelles se trouvent deux à trois neurones. De précédentes études morphologiques et anatomiques des ces neurones ont déterminé qu'ils sont impliqués dans la perception des odeurs, de l'humidité et de la température. Malgré ceci, la fonction principale de cet organe reste largement inconnue, principalement car il est inaccessible aux analyses électrophysiologiques. Récemment, une nouvelle famille de soixante-six récepteurs olfactifs, nommés Récepteurs lonotropiques (IRs), a été découverte chez la drosophile. Cinq IRs sont exprimés dans les neurones du sacculus. Pour la première fois, une sélection de marqueurs moléculaires est disponible pour l'étude de ces cellules. Dans cette thèse, les caractéristiques moléculaires, physiologiques et anatomiques des neurones du sacculus sont décrites. Ces populations de neurones situés dans le sacculus ont été marquées avec des gènes rapporteurs (CD8:GFP). Ceci a montré que les récepteurs IR40a et IR93a sont exprimés ensemble avec le co-récepteur IR25a dans les chambres I et II, tandis que les neurones de la chambre III expriment IR64a avec son co-récepteur IR8a. Ces deux groupes de neurones projettent vers deux glomérules distincts du lobe antennaire : les neurones IR40a projettent vers la column et le arm, alors que les neurones IR64a projettent vers DC4 et DP1m. Un screen d'imagerie optique a démontré que ces neurones sont en effet des neurones olfactifs, et que les neurones IR64a reconnaissent des ligands acides, tandis que les neurones IR40a reconnaissent des ligands aminés. De plus, les neurones IR40a et IR64a sont séparés en sous-populations distinctes anatomiquement et physiologiquement, et d'autres facteurs permettant de définir leurs propriétés fonctionnelles sont probablement impliqués. Cette thèse identifie ainsi le sacculus comme un organe olfactif spécialisé capable de détecter des acides et amines, lesquels sont très importants pour les insectes. Toutes les données collectées durant cette thèse, combinées aux données d'autres laboratoires, montrent que le sacculus est composé de différentes populations de neurones olfactifs et thermosenseurs. Ces IRs sont très conservés parmi les insectes, suggérant que le sacculus représente révolution d'un ancien détecteur olfactif d'acides et de bases chez l'insecte. - Tous les animaux sont capables de percevoir les signaux chimiques dans leur environnement, comme les odeurs ou le goût, via différents organes. L'odorat est le sens qui permet de percevoir les odeurs, et il est implique des neurones olfactifs qui se trouvent dans le nez des mammifères ou les antennes des insectes. La capacité d'un neurone olfactif à détecter une molécule odorante dépend des types de récepteurs olfactifs qu'il exprime. Il existe deux grandes familles de récepteurs qui perçoivent les odeurs : les Récepteurs Olfactifs, ORs, et Récepteurs lonotropiques IRs, qui détectent différents types d'odeurs avec différents mécanismes. Lorsqu'un récepteur reconnaît une molécule odorante, il convertit ce signal en un signal électrique qui est ensuite transmis au centre olfactif dans le cerveau. La drosophile (Drosophila melanogaster), aussi appelée mouche du vinaigre, est utilisée comme animal modèle pour étudier l'odorat, parce que son génome entier a été séquencé et que ses gènes sont facilement manipulables. De plus, l'anatomie du système olfactif de la mouche est similaire à celui des mammifères, malgré qu'il possède moins de neurones, ce qui le rend moins complexe. Ma thèse a pour objectif d'étudier les Récepteurs lonotropiques dans un organe spécifique, appelé le sacculus, situé dans les antennes. Les neurones du sacculus exprimant des IRs envoient leurs projections au centre olfactif du cerveau, suggérant que ces neurones perçoivent les odeurs. Une technique d'imagerie optique a été utilisée sur le cerveau de mouches vivantes afin de mesurer la réponse des neurones du le sacculus à différentes odeurs. J'ai démontré que ces récepteurs détectent des acides et des amines, qui sont très importants pour les insectes. Par exemple, les acides se retrouvent dans les fruits mûrs sur lesquels les mouches vont se nourrir, s'accoupler et poser leurs oeufs, et les amines sont souvent produites par des bactéries pouvant être nuisible pour la mouche. La principale découverte de ma thèse est donc l'identification du sacculus comme un organe capable de détecter deux des principales odeurs importantes pour la mouche. Ces récepteurs sont aussi présents dans d'autres insectes où ils jouent peut-être des rôles différents. Les acides et les amines se retrouvent aussi dans les excrétions (comme la sueur ou l'urine) de beaucoup de mammifères, qui pourraient potentiellement être dangereux pour la mouche, mais qui attirent les moustiques se nourrissant de leur sang.
Resumo:
Predicting which species will occur together in the future, and where, remains one of the greatest challenges in ecology, and requires a sound understanding of how the abiotic and biotic environments interact with dispersal processes and history across scales. Biotic interactions and their dynamics influence species' relationships to climate, and this also has important implications for predicting future distributions of species. It is already well accepted that biotic interactions shape species' spatial distributions at local spatial extents, but the role of these interactions beyond local extents (e.g. 10 km(2) to global extents) are usually dismissed as unimportant. In this review we consolidate evidence for how biotic interactions shape species distributions beyond local extents and review methods for integrating biotic interactions into species distribution modelling tools. Drawing upon evidence from contemporary and palaeoecological studies of individual species ranges, functional groups, and species richness patterns, we show that biotic interactions have clearly left their mark on species distributions and realised assemblages of species across all spatial extents. We demonstrate this with examples from within and across trophic groups. A range of species distribution modelling tools is available to quantify species environmental relationships and predict species occurrence, such as: (i) integrating pairwise dependencies, (ii) using integrative predictors, and (iii) hybridising species distribution models (SDMs) with dynamic models. These methods have typically only been applied to interacting pairs of species at a single time, require a priori ecological knowledge about which species interact, and due to data paucity must assume that biotic interactions are constant in space and time. To better inform the future development of these models across spatial scales, we call for accelerated collection of spatially and temporally explicit species data. Ideally, these data should be sampled to reflect variation in the underlying environment across large spatial extents, and at fine spatial resolution. Simplified ecosystems where there are relatively few interacting species and sometimes a wealth of existing ecosystem monitoring data (e.g. arctic, alpine or island habitats) offer settings where the development of modelling tools that account for biotic interactions may be less difficult than elsewhere.
Resumo:
Geological, hydrogeological and geochemical surveys were carried out in the Piedilago area (Ossola-Simplon region) in order to investigate the geothermal resources present in this area. Following these surface exploration efforts an exploratory geothermal well of 248 m was drilled in 1991. It discharges a thermal water with temperatures up to 43 degrees C and calcium (sodium) sulphate composition with a TDS close to 1350 mg/l. Chemical geothermometers suggest a reservoir temperature close to 45 degrees C indicating that the well virtually produces the pure uncooled thermal water. The Piedilago ex-ample is here considered as the departure point to establish both general criteria for further geothermal investigations in young mountains chains and taking into consideration all the available data on geology and fluid geochemistry of thermal systems in the Ossola-Simplon region, to constrain a geothermal model for the Lower Pennine Zone.
Resumo:
The use of artificial nest-boxes has led to significant progress in bird conservation and in our understanding of the functional and evolutionary ecology of free-ranging birds that exploit cavities for roosting and reproduction. Nest-boxes and their improved accessibility have made it easier to perform comparative and experimental field investigations. However, concerns about the generality and applicability of scientific studies involving birds breeding in nest-boxes have been raised because the occupants of boxes may differ from conspecifics occupying other nest sites. Here we review the existing evidence demonstrating the importance of nest-box design to individual life-history traits in three falcon (Falconiformes) and seven owl (Strigiformes) species, as well as the extent to which publications on these birds describe the characteristics of exploited artificial nest-boxes in their 'methods' sections. More than 60% of recent publications did not provide any details on nest-box design (e.g. size, shape, material), despite several calls >15 years ago to increase the reporting of such information. We exemplify and discuss how variation in nest-box characteristics can affect or confound conclusions from nest-box studies and conclude that it is of overall importance to present details of nest-box characteristics in scientific publications.
Resumo:
BACKGROUND: Data for trends in glycaemia and diabetes prevalence are needed to understand the effects of diet and lifestyle within populations, assess the performance of interventions, and plan health services. No consistent and comparable global analysis of trends has been done. We estimated trends and their uncertainties in mean fasting plasma glucose (FPG) and diabetes prevalence for adults aged 25 years and older in 199 countries and territories. METHODS: We obtained data from health examination surveys and epidemiological studies (370 country-years and 2·7 million participants). We converted systematically between different glycaemic metrics. For each sex, we used a Bayesian hierarchical model to estimate mean FPG and its uncertainty by age, country, and year, accounting for whether a study was nationally, subnationally, or community representative. FINDINGS: In 2008, global age-standardised mean FPG was 5·50 mmol/L (95% uncertainty interval 5·37-5·63) for men and 5·42 mmol/L (5·29-5·54) for women, having risen by 0·07 mmol/L and 0·09 mmol/L per decade, respectively. Age-standardised adult diabetes prevalence was 9·8% (8·6-11·2) in men and 9·2% (8·0-10·5) in women in 2008, up from 8·3% (6·5-10·4) and 7·5% (5·8-9·6) in 1980. The number of people with diabetes increased from 153 (127-182) million in 1980, to 347 (314-382) million in 2008. We recorded almost no change in mean FPG in east and southeast Asia and central and eastern Europe. Oceania had the largest rise, and the highest mean FPG (6·09 mmol/L, 5·73-6·49 for men; 6·08 mmol/L, 5·72-6·46 for women) and diabetes prevalence (15·5%, 11·6-20·1 for men; and 15·9%, 12·1-20·5 for women) in 2008. Mean FPG and diabetes prevalence in 2008 were also high in south Asia, Latin America and the Caribbean, and central Asia, north Africa, and the Middle East. Mean FPG in 2008 was lowest in sub-Saharan Africa, east and southeast Asia, and high-income Asia-Pacific. In high-income subregions, western Europe had the smallest rise, 0·07 mmol/L per decade for men and 0·03 mmol/L per decade for women; North America had the largest rise, 0·18 mmol/L per decade for men and 0·14 mmol/L per decade for women. INTERPRETATION: Glycaemia and diabetes are rising globally, driven both by population growth and ageing and by increasing age-specific prevalences. Effective preventive interventions are needed, and health systems should prepare to detect and manage diabetes and its sequelae. FUNDING: Bill & Melinda Gates Foundation and WHO.
Resumo:
BACKGROUND: The Complete Arabidopsis Transcript MicroArray (CATMA) initiative combines the efforts of laboratories in eight European countries 1 to deliver gene-specific sequence tags (GSTs) for the Arabidopsis research community. The CATMA initiative offers the power and flexibility to regularly update the GST collection according to evolving knowledge about the gene repertoire. These GST amplicons can easily be reamplified and shared, subsets can be picked at will to print dedicated arrays, and the GSTs can be cloned and used for other functional studies. This ongoing initiative has already produced approximately 24,000 GSTs that have been made publicly available for spotted microarray printing and RNA interference. RESULTS: GSTs from the CATMA version 2 repertoire (CATMAv2, created in 2002) were mapped onto the gene models from two independent Arabidopsis nuclear genome annotation efforts, TIGR5 and PSB-EuGène, to consolidate a list of genes that were targeted by previously designed CATMA tags. A total of 9,027 gene models were not tagged by any amplified CATMAv2 GST, and 2,533 amplified GSTs were no longer predicted to tag an updated gene model. To validate the efficacy of GST mapping criteria and design rules, the predicted and experimentally observed hybridization characteristics associated to GST features were correlated in transcript profiling datasets obtained with the CATMAv2 microarray, confirming the reliability of this platform. To complete the CATMA repertoire, all 9,027 gene models for which no GST had yet been designed were processed with an adjusted version of the Specific Primer and Amplicon Design Software (SPADS). A total of 5,756 novel GSTs were designed and amplified by PCR from genomic DNA. Together with the pre-existing GST collection, this new addition constitutes the CATMAv3 repertoire. It comprises 30,343 unique amplified sequences that tag 24,202 and 23,009 protein-encoding nuclear gene models in the TAIR6 and EuGène genome annotations, respectively. To cover the remaining untagged genes, we identified 543 additional GSTs using less stringent design criteria and designed 990 sequence tags matching multiple members of gene families (Gene Family Tags or GFTs) to cover any remaining untagged genes. These latter 1,533 features constitute the CATMAv4 addition. CONCLUSION: To update the CATMA GST repertoire, we designed 7,289 additional sequence tags, bringing the total number of tagged TAIR6-annotated Arabidopsis nuclear protein-coding genes to 26,173. This resource is used both for the production of spotted microarrays and the large-scale cloning of hairpin RNA silencing vectors. All information about the resulting updated CATMA repertoire is available through the CATMA database http://www.catma.org.
Resumo:
The acute renal tubular effects of two pharmacologically distinct angiotensin II receptor antagonists have been evaluated in normotensive volunteers on various salt diets. In the first study, the renal response to a single oral dose of losartan (100 mg) was assessed in subjects on a low (50 mmol Na/d) and on a high (200 mmol Na/d) salt intake. In a second protocol, the renal effects of 50 mg irbesartan were investigated in subjects receiving a 100 mmol Na/d diet. Both angiotensin II antagonists induced a significant increase in urinary sodium excretion. With losartan, a modest, transient increase in urinary potassium and a significant increase in uric acid excretion were found. In contrast, no change in potassium and uric acid excretions were observed with irbesartan, suggesting that the effects of losartan on potassium and uric acid are due to the intrinsic pharmacologic properties of losartan rather than to the specific blockade of renal angiotensin II receptors. Assessment of segmental sodium reabsorption using lithium as a marker of proximal tubular reabsorption demonstrated a decreased distal reabsorption of sodium with both antagonists. A direct proximal tubular natriuretic effect of the angiotensin II antagonist could be demonstrated only with irbesartan. This apparent discrepancy allowed us to reveal the importance of acute water loading as a possible confounding factor in renal studies. The results of the present analysis show that acute water loading per se may enhance renal sodium excretion and hence modify the level of activity of the renin-angiotensin system expected from a given sodium diet. Since acute water loading is a common practice in clinical renal studies, this confounding factor should be taken into account when investigating the renal effects of vasoactive systems.
Resumo:
Achieving a high degree of dependability in complex macro-systems is challenging. Because of the large number of components and numerous independent teams involved, an overview of the global system performance is usually lacking to support both design and operation adequately. A functional failure mode, effects and criticality analysis (FMECA) approach is proposed to address the dependability optimisation of large and complex systems. The basic inductive model FMECA has been enriched to include considerations such as operational procedures, alarm systems. environmental and human factors, as well as operation in degraded mode. Its implementation on a commercial software tool allows an active linking between the functional layers of the system and facilitates data processing and retrieval, which enables to contribute actively to the system optimisation. The proposed methodology has been applied to optimise dependability in a railway signalling system. Signalling systems are typical example of large complex systems made of multiple hierarchical layers. The proposed approach appears appropriate to assess the global risk- and availability-level of the system as well as to identify its vulnerabilities. This enriched-FMECA approach enables to overcome some of the limitations and pitfalls previously reported with classical FMECA approaches.
Resumo:
OBJECTIVES: The purpose of this study was to determine whether thoracic endovascular aortic repair (TEVAR) reduces death and morbidity compared with open surgical repair for descending thoracic aortic disease. BACKGROUND: The role of TEVAR versus open surgery remains unclear. Metaregression can be used to maximally inform adoption of new technologies by utilizing evidence from existing trials. METHODS: Data from comparative studies of TEVAR versus open repair of the descending aorta were combined through meta-analysis. Metaregression was performed to account for baseline risk factor imbalances, study design, and thoracic pathology. Due to significant heterogeneity, registry data were analyzed separately from comparative studies. RESULTS: Forty-two nonrandomized studies involving 5,888 patients were included (38 comparative studies, 4 registries). Patient characteristics were balanced except for age, as TEVAR patients were usually older than open surgery patients (p = 0.001). Registry data suggested overall perioperative complications were reduced. In comparative studies, all-cause mortality at 30 days (odds ratio [OR]: 0.44, 95% confidence interval [CI]: 0.33 to 0.59) and paraplegia (OR: 0.42, 95% CI: 0.28 to 0.63) were reduced for TEVAR versus open surgery. In addition, cardiac complications, transfusions, reoperation for bleeding, renal dysfunction, pneumonia, and length of stay were reduced. There was no significant difference in stroke, myocardial infarction, aortic reintervention, and mortality beyond 1 year. Metaregression to adjust for age imbalance, study design, and pathology did not materially change the results. CONCLUSIONS: Current data from nonrandomized studies suggest that TEVAR may reduce early death, paraplegia, renal insufficiency, transfusions, reoperation for bleeding, cardiac complications, pneumonia, and length of stay compared with open surgery. Sustained benefits on survival have not been proven.
Resumo:
OBJECTIVE: Intervention during the pre-psychotic period of illness holds the potential of delaying or even preventing the onset of a full-threshold disorder, or at least of reducing the impact of such a disorder if it does develop. The first step in realizing this aim was achieved more than 10 years ago with the development and validation of criteria for the identification of young people at ultra-high risk (UHR) of psychosis. Results of three clinical trials have been published that provide mixed support for the effectiveness of psychological and pharmacological interventions in preventing the onset of psychotic disorder. METHOD: The present paper describes a fourth study that has now been undertaken in which young people who met UHR criteria were randomized to one of three treatment groups: cognitive therapy plus risperidone (CogTher + Risp: n = 43); cognitive therapy plus placebo (CogTher + Placebo: n = 44); and supportive counselling + placebo (Supp + Placebo; n = 28). A fourth group of young people who did not agree to randomization were also followed up (monitoring: n = 78). Baseline characteristics of participants are provided. RESULTS AND CONCLUSION: The present study improves on the previous studies because treatment was provided for 12 months and the independent contributions of psychological and pharmacological treatments in preventing transition to psychosis in the UHR cohort and on levels of psychopathology and functioning can be directly compared. Issues associated with recruitment and randomization are discussed.
Resumo:
OBJECTIVE: This systematic review and meta-analysis of randomized controlled trials (RCTs) assesses the effect of pharmacist care on cardiovascular disease (CVD) risk factors among outpatients with diabetes. RESEARCH DESIGN AND METHODS: MEDLINE, EMBASE, CINAHL, and the Cochrane Central Register of Controlled Trials were searched. Pharmacist interventions were classified, and a meta-analysis of mean changes of blood pressure (BP), total cholesterol (TC), LDL cholesterol, HDL cholesterol, and BMI was performed using random-effects models. RESULTS: The meta-analysis included 15 RCTs (9,111 outpatients) in which interventions were conducted exclusively by pharmacists in 8 studies and in collaboration with physicians, nurses, dietitians, or physical therapists in 7 studies. Pharmacist interventions included medication management, educational interventions, feedback to physicians, measurement of CVD risk factors, or patient-reminder systems. Compared with usual care, pharmacist care was associated with significant reductions for systolic BP (12 studies with 1,894 patients; -6.2 mmHg [95% CI -7.8 to -4.6]); diastolic BP (9 studies with 1,496 patients; -4.5 mmHg [-6.2 to -2.8]); TC (8 studies with 1,280 patients; -15.2 mg/dL [-24.7 to -5.7]); LDL cholesterol (9 studies with 8,084 patients; -11.7 mg/dL [-15.8 to -7.6]); and BMI (5 studies with 751 patients; -0.9 kg/m(2) [-1.7 to -0.1]). Pharmacist care was not associated with a significant change in HDL cholesterol (6 studies with 826 patients; 0.2 mg/dL [-1.9 to 2.4]). CONCLUSIONS: This meta-analysis supports pharmacist interventions-alone or in collaboration with other health care professionals-to improve major CVD risk factors among outpatients with diabetes.