3 resultados para Density functional calculations

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The new complex, [Zr(pda)2]n (1, pda2- = N,N'-bis(neo-pentyl)-ortho-phenylenediamide, n = 1 or 2), prepared by the reaction of 2 equiv of pdaLi2 with ZrCl4, reacts rapidly with halogen oxidants to afford the new product ZrX2(disq)2 (3, X = Cl, Br, I; disq- = N,N'-bis(neo-pentyl)-ortho-diiminosemiquinonate) in which each redox-active ligand has been oxidized by one electron. The oxidation products 3a-c have been structurally characterized and display an unusual parallel stacked arrangement of the disq- ligands in the solid state, with a separation of approximately 3 A. Density functional calculations show a bonding-type interaction between the SOMOs of the disq- ligands to form a unique HOMO while the antibonding linear combination forms a unique LUMO. This orbital configuration leads to a closed-shell-singlet ground-state electron configuration (S = 0). Temperature-dependent magnetism measurements indicate a low-lying triplet excited state at approximately 750 cm-1. In solution, 3a-c show strong disq--based absorption bands that are invariant across the halide series. Taken together these spectroscopic measurements provide experimental values for the one- and two-electron energies that characterize the pi-stacked bonding interaction between the two disq- ligands.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In silico screening has become a valuable tool in drug design, but some drug targets represent real challenges for docking algorithms. This is especially true for metalloproteins, whose interactions with ligands are difficult to parametrize. Our docking algorithm, EADock, is based on the CHARMM force field, which assures a physically sound scoring function and a good transferability to a wide range of systems, but also exhibits difficulties in case of some metalloproteins. Here, we consider the therapeutically important case of heme proteins featuring an iron core at the active site. Using a standard docking protocol, where the iron-ligand interaction is underestimated, we obtained a success rate of 28% for a test set of 50 heme-containing complexes with iron-ligand contact. By introducing Morse-like metal binding potentials (MMBP), which are fitted to reproduce density functional theory calculations, we are able to increase the success rate to 62%. The remaining failures are mainly due to specific ligand-water interactions in the X-ray structures. Testing of the MMBP on a second data set of non iron binders (14 cases) demonstrates that they do not introduce a spurious bias towards metal binding, which suggests that they may reliably be used also for cross-docking studies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We address the challenges of treating polarization and covalent interactions in docking by developing a hybrid quantum mechanical/molecular mechanical (QM/MM) scoring function based on the semiempirical self-consistent charge density functional tight-binding (SCC-DFTB) method and the CHARMM force field. To benchmark this scoring function within the EADock DSS docking algorithm, we created a publicly available dataset of high-quality X-ray structures of zinc metalloproteins ( http://www.molecular-modelling.ch/resources.php ). For zinc-bound ligands (226 complexes), the QM/MM scoring yielded a substantially improved success rate compared to the classical scoring function (77.0% vs 61.5%), while, for allosteric ligands (55 complexes), the success rate remained constant (49.1%). The QM/MM scoring significantly improved the detection of correct zinc-binding geometries and improved the docking success rate by more than 20% for several important drug targets. The performance of both the classical and the QM/MM scoring functions compare favorably to the performance of AutoDock4, AutoDock4Zn, and AutoDock Vina.