128 resultados para Defect structures
em Université de Lausanne, Switzerland
Resumo:
Résumé Une caractéristique des cellules eucaryotes est le confinement du matériel génétique (ADN/DNA) dans le noyau. Pour décoder cette information, un ARN messager (mRNA) est d'abord transcrit sous forme d'un ARN prémessager (pré-mRNA). Ce-dernier doit subir plusieurs étapes de maturation pour aboutir à une particule ribonucléoprotéique (mRNP) qui sera exportée vers le cytoplasme et traduite en protéine. La protéine de levure Mex67p et son homologue humain TAP sont des récepteurs d'export médiant la translocation du mRNP au travers des complexes du pore nucléaire (NPC). Mex67p/TAP ne se lient pas directement au mRNA, mais nécessitent la présence de protéines adaptatrices, telles que Yra1p et son homologue humain REF1. Afin d'identifier de nouveaux facteurs impliqués dans l'export des mRNPs ou de nouvelles fonctions pour Yra1p, nous avons effectué un crible génétique avec un mutant thermosensible de Yra1p, GFP-yra 1 -8. Ce mutant présente un défaut d'export des mRNAs et une diminution des niveaux de transcrits du gène rapporteur LacZ ainsi que de certains transcrits endogènes. Nous avons trouvé que la perte de Mlp2p, ou d'une protéine hautement similaire, Mlp1p, restaure la croissance du mutant GFP-yra1-8 à température restrictive. Mlp1p et Mlp2p sont des protéines nucléaires, dont l'homologue humain est TPR. Les Mlp (myosin¬like proteins) ainsi que TPR forment des structures filamenteuses ancrées aux NPC. Bien que la fonction des Mlp ne soit pas clairement définie, un rôle dans la biogenèse et la surveillance des mRNPs a été récemment proposé. Notre étude montre que la perte des Mlp, non seulement restaure la croissance de GFP-yra1-8, mais augmente aussi les niveaux des transcrits LacZ et facilite leur apparition dans le cytoplasme. Des expériences d'immunoprécipitations de la chromatine révèlent que Mlp2p diminue le taux de synthèse du transcrit LacZ dans GFP-yra1-8. Des analyses du transcriptome montrent que Mlp2p réduit aussi les niveaux d'une population de transcrits endogènes dans le mutant. Finalement, des localisations in situ suggèrent que la transcription du rapporteur LacZ a lieu à la périphérie du noyau, à proximité des Mlp. Ainsi, les protéines Mlp pourraient préférentiellement diminuer la transcription de gènes exprimés à la périphérie nucléaire. Nous montrons aussi que Yra1p interagit génétiquement avec Nab2p une protéine liée au mRNA et impliquée dans son export, mais non avec d'autres protéines également impliquées dans l'export des mRNAs. Les résultats obtenus soutiennent un modèle où les protéines Yra1p et Nab2p sont nécessaires à l'arrimage des mRNPs sur la plate-forme des Mlp. Si ces signaux manquent ou sont défectueux, les mRNPs ne peuvent pas poursuivre leur trajet vers le canal central du NPC. Ce bloc induirait par la suite une diminution de la transcription d'une population de gènes potentiellement localisée à la périphérie nucléaire. Dans son ensemble, cette étude suggère que les protéines Mlp établissent un lien entre la transcription de certains mRNAs et leur export au travers du pore nucléaire. Summary A hallmark of the eukaryotic cell is the packaging of DNA in the nucleus. To decode the genetic information, a messenger RNA (mRNA) is first synthesized as a pre-mRNA molecule, which undergoes different maturation steps resulting in an mRNP (messenger RNA ribonucleoprotein), which can be actively transported to the cytoplasm and translated into a protein. Yeast Mex67p and its human homologue TAP are export receptors mediating mRNP translocation through the nuclear pore complex (NPC). The recruitment of Mex67p/TAP to mRNA is mediated by mRNA export adaptors of the evolutionarily conserved REF (RNA and Export Factor binding) family: yeast Yra1p and human REF1. To uncover new functions of Yra1p or new factors implicated in mRNA export, we performed a genetic screen with a themiosensitive (ts) yra1 mutant, GFP-yra1-8. This mutant exhibits mRNA export defects and a decrease in the levels of LacZ reporter and certain endogenous transcripts. We found that the loss of Mlp2p, or the related Mlp1p protein, substantially rescues the growth defect of the GFP-yra1 -8 mutant. Mlp1p and M1p2p are large non-essential proteins, homologous to human TPR, proposed to form intra-nuclear filamentous structures anchored at the NPC. Their role is not clearly defined, but they have been implicated in mRNP biogenesis and surveillance. Our study shows that loss of Mlp proteins not only restores growth of GFP-yra1-8, but also rescues LacZ mRNA levels and increases their appearance in the cytoplasm. Chromatin immunoprecipitation and pulse chase experiments indicate that Mlp2p down-regulates LacZ mRNA synthesis in GFP-yra1-8. DNA micro- array analyses reveal that Mlp2p also reduces the levels of a subset of cellular transcripts in the yra1 mutant strain. In situ localizations suggest that LacZ transcription occurs at the nuclear periphery, in close proximity to Mlp proteins. Thus, Mlp proteins may preferentially down-regulate genes expressed at the nuclear periphery. Finally, we show that Yra1p genetically interacts with the shuttling mRNA-binding protein Nab2p and that loss of Mlp proteins rescues the growth defect of yra1 and nab2, but not other mRNA export mutants. The data support a model in which Nab2p and Yra1p are required for rnRNP docking to the Mlp platform. Lack of these signals prevents mRNPs from crossing the Mlp gate. This block may then negatively feed-back on the transcription of a subset of genes, potentially located at the nuclear envelope. Overall, this study suggests that perinuclear Mlp proteins establish a link between mRNA transcription and export.
Resumo:
Peroxisome proliferator-activated receptors (PPARs) compose a family of nuclear receptors that mediate the effects of lipidic ligands at the transcriptional level. In this review, we highlight advances in the understanding of the PPAR ligand binding domain (LBD) structure at the atomic level. The overall structure of PPARs LBD is described, and important protein ligand interactions are presented. Structure-activity relationships between isotypes structures and ligand specificity are addressed. It is shown that the numerous experimental three-dimensional structures available, together with in silico simulations, help understanding the role played by the activating function-2 (AF-2) in PPARs activation and its underlying molecular mechanism. The relation between the PPARs constitutive activity and the intrinsic stability of the active conformation is discussed. Finally, the interactions of PPARs LBD with co-activators or co-repressors, as well as with the retinoid X receptor (RXR) are described and considered in relation to PPARs activation.
Resumo:
Anatomical structures and mechanisms linking genes to neuropsychiatric disorders are not deciphered. Reciprocal copy number variants at the 16p11.2 BP4-BP5 locus offer a unique opportunity to study the intermediate phenotypes in carriers at high risk for autism spectrum disorder (ASD) or schizophrenia (SZ). We investigated the variation in brain anatomy in 16p11.2 deletion and duplication carriers. Beyond gene dosage effects on global brain metrics, we show that the number of genomic copies negatively correlated to the gray matter volume and white matter tissue properties in cortico-subcortical regions implicated in reward, language and social cognition. Despite the near absence of ASD or SZ diagnoses in our 16p11.2 cohort, the pattern of brain anatomy changes in carriers spatially overlaps with the well-established structural abnormalities in ASD and SZ. Using measures of peripheral mRNA levels, we confirm our genomic copy number findings. This combined molecular, neuroimaging and clinical approach, applied to larger datasets, will help interpret the relative contributions of genes to neuropsychiatric conditions by measuring their effect on local brain anatomy.Molecular Psychiatry advance online publication, 25 November 2014; doi:10.1038/mp.2014.145.
Resumo:
The high density of slope failures in western Norway is due to the steep relief and to the concentration of various structures that followed protracted ductile and brittle tectonics. On the 72 investigated rock slope instabilities, 13 were developed in soft weathered mafic and phyllitic allochthons. Only the intrinsic weakness of such rocks increases the susceptibility to gravitational deformation. In contrast, the gravitational structures in the hard gneisses reactivate prominent ductile or/and brittle fabrics. At 30 rockslides along cataclinal slopes, weak mafic layers of foliation are reactivated as basal planes. Slope-parallel steep foliation forms back-cracks of unstable columns. Folds are specifically present in the Storfjord area, together with a clustering of potential slope failures. Folding increases the probability of having favourably orientated planes with respect to the gravitational forces and the slope. High water pressure is believed to seasonally build up along the shallow-dipping Caledonian detachments and may contribute to destabilization of the rock slope upwards. Regional cataclastic faults localized the gravitational structures at 45 sites. The volume of the slope instabilities tends to increase with the amount of reactivated prominent structures and the spacing of the latter controls the size of instabilities.
Long-term fluctuation of relative afferent pupillary defect in subjects with normal visual function.
Resumo:
PURPOSE: To determine whether the relative afferent pupillary defect (RAPD) remains constant over time in normal subjects. METHODS: Seventeen normal subjects were tested with infrared pupillography and automated perimetry in four sessions over 3 years. The changes in RAPD and visual field asymmetry between testing sessions were compared. RESULTS: The range of RAPD was 0.0 to 0.3 log unit, and the difference in the mean deviation between the eyes on automated static perimetry was 0 to 3 dB. Eight subjects repeatedly had an RAPD in the same eye. There was no correlation between the RAPD and the visual field asymmetry at the same visit. Changes in the magnitude of the RAPD between any two sessions were typically small (median, 0.08 log unit; 25th percentile, 0.04 log unit; 75th percentile, 0.15 log unit). CONCLUSIONS: Some normal subjects may show a persistent but small RAPD in the absence of detectable pathologic disease. Therefore, an isolated RAPD in the range of 0.3 log unit that is not associated with any other significant historical or clinical finding should probably be considered benign.
Resumo:
The 30 M m3 rockslide that occurred on the east face of Turtle Mountain in the Crowsnest Pass area (Alberta) in 1903 is one of the most famous landslides in the world. In this paper, the structural features of the South part of Turtle Mountain are investigated in order to understand the present-day scar morphology and to identify the most important failure mechanisms. The structural features were mapped using a high resolution digital elevation model (DEM) in order to have a large overview of the relevant structural features. At the same time, a field survey was carried out and small scale fractures were analyzed in different parts of southern Turtle Mountain in order to confirm the DEM analysis. Results allow to identify six main discontinuity sets that influence the Turtle Mountain morphology. These discontinuity sets were then used to identify the potential failure mechanisms affecting Third Peak and South Peak area.
Resumo:
Åknes is an active complex large rockslide of approximately 30?40 Mm3 located within the Proterozoic gneisses of western Norway. The observed surface displacements indicate that this rockslide is divided into several blocks moving in different directions at velocities of between 3 and 10 cm year?1. Because of regional safety issues and economic interests this rockslide has been extensively monitored since 2004. The understanding of the deformation mechanism is crucial for the implementation of a viable monitoring system. Detailed field investigations and the analysis of a digital elevation model (DEM) indicate that the movements and the block geometry are controlled by the main schistosity (S1) in gneisses, folds, joints and regional faults. Such complex slope deformations use pre-existing structures, but also result in new failure surfaces and deformation zones, like preferential rupture in fold-hinge zones. Our interpretation provides a consistent conceptual three-dimensional (3D) model for the movements measured by various methods that is crucial for numerical stability modelling. In addition, this reinterpretation of the morphology confirms that in the past several rockslides occurred from the Åknes slope. They may be related to scars propagating along the vertical foliation in folds hinges. Finally, a model of the evolution of the Åknes slope is presented.
Resumo:
BACKGROUND: Surgical correction of complete atrio-ventricular septal defect (AVSD) achieves satisfactory results with low morbidity and mortality, but may require reoperation. Our recent operative results at mid-term were followed-up. METHODS: From June 2000 to December 2007, 81 patients (Down syndrome; n=60), median age 4.0 months (range 0.7-118.6) and weight 4.7kg (range 2.2-33), underwent complete AVSD correction. Patch closure for the ventricular septal defect (VSD; n=69) and atrial septal defect (ASD; n=42) was performed with left atrio-ventricular valve (LAVV) cleft closure (n=76) and right atrio-ventricular valve (RAVV) repair (n=57). Mortality, morbidity, and indications for reoperation were retrospectively studied; the end point 'time to reoperation' was analyzed using Kaplan-Meier curves. Follow-up was complete except in two patients and spanned a median of 28 months (range 0.4-6.1 years). RESULTS: In-hospital mortality was 3.7% (n=3) and one late death occurred. Reoperation was required in 7/79 patients (8.9%) for LAVV insufficiency (n=4), for a residual ASD (n=1), for right atrio-ventricular valve insufficiency (n=1), and for subaortic stenosis (n=1). At last follow-up, no or only mild LAVV and RAVV insufficiency was present in 81.3% and 92.1% of patients, respectively, and 2/3 of patients were medication-free. Risk factors for reoperation were younger age (<3 months; p=0.001) and lower weight (<4kg; p=0.003), and a trend towards less and later reoperations in Down syndrome (p<0.2). CONCLUSIONS: Surgical correction of AVSD can be achieved with low mortality and need for reoperation, regardless of Down syndrome or not. Immediate postoperative moderate or more residual atrio-ventricular valve insufficiency will eventually require a reoperation, and could be anticipated in patients younger than 3 months and weighing <4kg.
Resumo:
Brain deformations induced by space-occupying lesions may result in unpredictable position and shape of functionally important brain structures. The aim of this study is to propose a method for segmentation of brain structures by deformation of a segmented brain atlas in presence of a space-occupying lesion. Our approach is based on an a priori model of lesion growth (MLG) that assumes radial expansion from a seeding point and involves three steps: first, an affine registration bringing the atlas and the patient into global correspondence; then, the seeding of a synthetic tumor into the brain atlas providing a template for the lesion; finally, the deformation of the seeded atlas, combining a method derived from optical flow principles and a model of lesion growth. The method was applied on two meningiomas inducing a pure displacement of the underlying brain structures, and segmentation accuracy of ventricles and basal ganglia was assessed. Results show that the segmented structures were consistent with the patient's anatomy and that the deformation accuracy of surrounding brain structures was highly dependent on the accurate placement of the tumor seeding point. Further improvements of the method will optimize the segmentation accuracy. Visualization of brain structures provides useful information for therapeutic consideration of space-occupying lesions, including surgical, radiosurgical, and radiotherapeutic planning, in order to increase treatment efficiency and prevent neurological damage.
Resumo:
[Table des matières] Résumés. - 2. Introduction. - 3. Méthode pour l'enquête clientèle. - 4. Tendances pour l'ensemble des répondants: Caractéristiques sociodémographiques des usagers ; Consommation de substances et traitement de substitution ; Indicateurs de pratique de l'injection ; Activité sexuelle et comportement préventif; Indicateurs de l'état de santé ; Incarcération en lien avec la drogue et consommation en prison. - 5. Tendances pour les injecteurs de drogue au cours de la vie: Caractéristiques sociodémographiques des usagers injecteurs de drogue ; Consommation de substances et traitement de substitution ; Indicateurs de pratique de l'injection ; Partage de seringues et de matériel ; Activité sexuelle et comportement préventif ; Indicateurs de l'état de santé ; Incarcération en lien avec la drogue et consommation en prison. - 6. Tendances pour les consommateurs de drogue qui ne se sont jamais injecté de drogue au cours de la vie: Caractéristiques sociodémographiques des usagers non-injecteurs de drogue ; Consommation de substances et traitement de substitution ; Activité sexuelle et comportement préventif ; Indicateurs de l'état de santé ; Incarcération en lien avec la drogue et consommation en prison. - 7. Références
Resumo:
Human and chimpanzee genomes are 98.8% identical within comparable sequences. However, they differ structurally in nine pericentric inversions, one fusion that originated human chromosome 2, and content and localization of heterochromatin and lineage-specific segmental duplications. The possible functional consequences of these cytogenetic and structural differences are not fully understood and their possible involvement in speciation remains unclear. We show that subtelomeric regions-regions that have a species-specific organization, are more divergent in sequence, and are enriched in genes and recombination hotspots-are significantly enriched for species-specific histone modifications that decorate transcription start sites in different tissues in both human and chimpanzee. The human lineage-specific chromosome 2 fusion point and ancestral centromere locus as well as chromosome 1 and 18 pericentric inversion breakpoints showed enrichment of human-specific H3K4me3 peaks in the prefrontal cortex. Our results reveal an association between plastic regions and potential novel regulatory elements.