4 resultados para Deep Brain-stimulation

em Université de Lausanne, Switzerland


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study, we evaluated stimulation of the angiotensin type 2 receptor (AT2R) by the selective non-peptide agonist Compound 21 (C21) as a novel therapeutic concept for the treatment of multiple sclerosis using the model of experimental autoimmune encephalomyelitis (EAE) in mice. C57BL-6 mice were immunized with myelin-oligodendrocyte peptide and treated for 4 weeks with C21 (0.3 mg/kg/day i.p.). Potential effects on myelination, microglia and T-cell composition were estimated by immunostaining and FACS analyses of lumbar spinal cords. The in vivo study was complemented by experiments in aggregating brain cell cultures and microglia in vitro. In the EAE model, treatment with C21 ameliorated microglia activation and decreased the number of total T-cells and CD4+ T-cells in the spinal cord. Fluorescent myelin staining of spinal cords further revealed a significant reduction in EAE-induced demyelinated areas in lumbar spinal cord tissue after AT2R stimulation. C21-treated mice had a significantly better neurological score than vehicle-treated controls. In aggregating brain cell cultures challenged with lipopolysaccharide (LPS) plus interferon-γ (IFNγ), AT2R stimulation prevented demyelination, accelerated re-myelination and reduced the number of microglia. Cytokine synthesis and nitric oxide production by microglia in vitro were significantly reduced after C21 treatment. These results suggest that AT2R stimulation protects the myelin sheaths in autoimmune central nervous system inflammation by inhibiting the T-cell response and microglia activation. Our findings identify the AT2R as a potential new pharmacological target for demyelinating diseases such as multiple sclerosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: Management of brain arteriovenous malformation (bAVM) is controversial. We have analyzed the largest surgical bAVM cohort for outcome. METHODS: Both operated and nonoperated cases were included for analysis. A total of 779 patients with bAVMs were consecutively enrolled between 1989 and 2014. Initial management recommendations were recorded before commencement of treatment. Surgical outcome was prospectively recorded and outcomes assigned at the last follow-up visit using modified Rankin Scale. First, a sensitivity analyses was performed to select a subset of the entire cohort for which the results of surgery could be generalized. Second, from this subset, variables were analyzed for risk of deficit or near miss (intraoperative hemorrhage requiring blood transfusion of ≥2.5 L, hemorrhage in resection bed requiring reoperation, and hemorrhage associated with either digital subtraction angiography or embolization). RESULTS: A total of 7.7% of patients with Spetzler-Ponce classes A and B bAVM had an adverse outcome from surgery leading to a modified Rankin Scale >1. Sensitivity analyses that demonstrated outcome results were not subject to selection bias for Spetzler-Ponce classes A and B bAVMs. Risk factors for adverse outcomes from surgery for these bAVMs include size, presence of deep venous drainage, and eloquent location. Preoperative embolization did not affect the risk of perioperative hemorrhage. CONCLUSIONS: Most of the ruptured and unruptured low and middle-grade bAVMs (Spetzler-Ponce A and B) can be surgically treated with a low risk of permanent morbidity and a high likelihood of preventing future hemorrhage. Our results do not apply to Spetzler-Ponce C bAVMs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The physiological basis of human cerebral asymmetry for language remains mysterious. We have used simultaneous physiological and anatomical measurements to investigate the issue. Concentrating on neural oscillatory activity in speech-specific frequency bands and exploring interactions between gestural (motor) and auditory-evoked activity, we find, in the absence of language-related processing, that left auditory, somatosensory, articulatory motor, and inferior parietal cortices show specific, lateralized, speech-related physiological properties. With the addition of ecologically valid audiovisual stimulation, activity in auditory cortex synchronizes with left-dominant input from the motor cortex at frequencies corresponding to syllabic, but not phonemic, speech rhythms. Our results support theories of language lateralization that posit a major role for intrinsic, hardwired perceptuomotor processing in syllabic parsing and are compatible both with the evolutionary view that speech arose from a combination of syllable-sized vocalizations and meaningful hand gestures and with developmental observations suggesting phonemic analysis is a developmentally acquired process.