170 resultados para Decision rules

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Although CD4 cell count monitoring is used to decide when to start antiretroviral therapy in patients with HIV-1 infection, there are no evidence-based recommendations regarding its optimal frequency. It is common practice to monitor every 3 to 6 months, often coupled with viral load monitoring. We developed rules to guide frequency of CD4 cell count monitoring in HIV infection before starting antiretroviral therapy, which we validated retrospectively in patients from the Swiss HIV Cohort Study.Methodology/Principal Findings: We built up two prediction rules ("Snap-shot rule" for a single sample and "Track-shot rule" for multiple determinations) based on a systematic review of published longitudinal analyses of CD4 cell count trajectories. We applied the rules in 2608 untreated patients to classify their 18 061 CD4 counts as either justifiable or superfluous, according to their prior >= 5% or < 5% chance of meeting predetermined thresholds for starting treatment. The percentage of measurements that both rules falsely deemed superfluous never exceeded 5%. Superfluous CD4 determinations represented 4%, 11%, and 39% of all actual determinations for treatment thresholds of 500, 350, and 200x10(6)/L, respectively. The Track-shot rule was only marginally superior to the Snap-shot rule. Both rules lose usefulness for CD4 counts coming near to treatment threshold.Conclusions/Significance: Frequent CD4 count monitoring of patients with CD4 counts well above the threshold for initiating therapy is unlikely to identify patients who require therapy. It appears sufficient to measure CD4 cell count 1 year after a count > 650 for a threshold of 200, > 900 for 350, or > 1150 for 500x10(6)/L, respectively. When CD4 counts fall below these limits, increased monitoring frequency becomes advisable. These rules offer guidance for efficient CD4 monitoring, particularly in resource-limited settings.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

INTRODUCTION: A clinical decision rule to improve the accuracy of a diagnosis of influenza could help clinicians avoid unnecessary use of diagnostic tests and treatments. Our objective was to develop and validate a simple clinical decision rule for diagnosis of influenza. METHODS: We combined data from 2 studies of influenza diagnosis in adult outpatients with suspected influenza: one set in California and one in Switzerland. Patients in both studies underwent a structured history and physical examination and had a reference standard test for influenza (polymerase chain reaction or culture). We randomly divided the dataset into derivation and validation groups and then evaluated simple heuristics and decision rules from previous studies and 3 rules based on our own multivariate analysis. Cutpoints for stratification of risk groups in each model were determined using the derivation group before evaluating them in the validation group. For each decision rule, the positive predictive value and likelihood ratio for influenza in low-, moderate-, and high-risk groups, and the percentage of patients allocated to each risk group, were reported. RESULTS: The simple heuristics (fever and cough; fever, cough, and acute onset) were helpful when positive but not when negative. The most useful and accurate clinical rule assigned 2 points for fever plus cough, 2 points for myalgias, and 1 point each for duration <48 hours and chills or sweats. The risk of influenza was 8% for 0 to 2 points, 30% for 3 points, and 59% for 4 to 6 points; the rule performed similarly in derivation and validation groups. Approximately two-thirds of patients fell into the low- or high-risk group and would not require further diagnostic testing. CONCLUSION: A simple, valid clinical rule can be used to guide point-of-care testing and empiric therapy for patients with suspected influenza.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Our objective was to determine the test and treatment thresholds for common acute primary care conditions. We presented 200 clinicians with a series of web-based clinical vignettes, describing patients with possible influenza, acute coronary syndrome (ACS), pneumonia, deep vein thrombosis (DVT) and urinary tract infection (UTI). We randomly varied the probability of disease and asked whether the clinician wanted to rule out disease, order tests or rule in disease. By randomly varying the probability, we obtained clinical decisions across a broad range of disease probabilities that we used to create threshold curves. For influenza, the test (4.5% vs 32%, p<0.001) and treatment (55% vs 68%, p=0.11) thresholds were lower for US compared with Swiss physicians. US physicians had somewhat higher test (3.8% vs 0.7%, p=0.107) and treatment (76% vs 58%, p=0.005) thresholds for ACS than Swiss physicians. For both groups, the range between test and treatment thresholds was greater for ACS than for influenza (which is sensible, given the consequences of incorrect diagnosis). For pneumonia, US physicians had a trend towards higher test thresholds and lower treatment thresholds (48% vs 64%, p=0.076) than Swiss physicians. The DVT and UTI scenarios did not provide easily interpretable data, perhaps due to poor wording of the vignettes. We have developed a novel approach for determining decision thresholds. We found important differences in thresholds for US and Swiss physicians that may be a function of differences in healthcare systems. Our results can also guide development of clinical decision rules and guidelines.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Standardized clinical examination can obviate the need for osteoarticular radiographs for trauma. This paper summarizes a number of decision rules that allow clinical exclusion of significant fracture of the cervical spine, elbow, knee or ankle, making radiographs unnecessary. These criteria were all derived from large cohort studies (Nexus, Ottawa, CCS, etc..., and have been prospectively validated. The rigorous use of these criteria in daily practice improves treatment times and costs with no adverse effect on treatment quality.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The research considers the problem of spatial data classification using machine learning algorithms: probabilistic neural networks (PNN) and support vector machines (SVM). As a benchmark model simple k-nearest neighbor algorithm is considered. PNN is a neural network reformulation of well known nonparametric principles of probability density modeling using kernel density estimator and Bayesian optimal or maximum a posteriori decision rules. PNN is well suited to problems where not only predictions but also quantification of accuracy and integration of prior information are necessary. An important property of PNN is that they can be easily used in decision support systems dealing with problems of automatic classification. Support vector machine is an implementation of the principles of statistical learning theory for the classification tasks. Recently they were successfully applied for different environmental topics: classification of soil types and hydro-geological units, optimization of monitoring networks, susceptibility mapping of natural hazards. In the present paper both simulated and real data case studies (low and high dimensional) are considered. The main attention is paid to the detection and learning of spatial patterns by the algorithms applied.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dans cette thèse, nous étudions les aspects comportementaux d'agents qui interagissent dans des systèmes de files d'attente à l'aide de modèles de simulation et de méthodologies expérimentales. Chaque période les clients doivent choisir un prestataire de servivce. L'objectif est d'analyser l'impact des décisions des clients et des prestataires sur la formation des files d'attente. Dans un premier cas nous considérons des clients ayant un certain degré d'aversion au risque. Sur la base de leur perception de l'attente moyenne et de la variabilité de cette attente, ils forment une estimation de la limite supérieure de l'attente chez chacun des prestataires. Chaque période, ils choisissent le prestataire pour lequel cette estimation est la plus basse. Nos résultats indiquent qu'il n'y a pas de relation monotone entre le degré d'aversion au risque et la performance globale. En effet, une population de clients ayant un degré d'aversion au risque intermédiaire encoure généralement une attente moyenne plus élevée qu'une population d'agents indifférents au risque ou très averses au risque. Ensuite, nous incorporons les décisions des prestataires en leur permettant d'ajuster leur capacité de service sur la base de leur perception de la fréquence moyenne d'arrivées. Les résultats montrent que le comportement des clients et les décisions des prestataires présentent une forte "dépendance au sentier". En outre, nous montrons que les décisions des prestataires font converger l'attente moyenne pondérée vers l'attente de référence du marché. Finalement, une expérience de laboratoire dans laquelle des sujets jouent le rôle de prestataire de service nous a permis de conclure que les délais d'installation et de démantèlement de capacité affectent de manière significative la performance et les décisions des sujets. En particulier, les décisions du prestataire, sont influencées par ses commandes en carnet, sa capacité de service actuellement disponible et les décisions d'ajustement de capacité qu'il a prises, mais pas encore implémentées. - Queuing is a fact of life that we witness daily. We all have had the experience of waiting in line for some reason and we also know that it is an annoying situation. As the adage says "time is money"; this is perhaps the best way of stating what queuing problems mean for customers. Human beings are not very tolerant, but they are even less so when having to wait in line for service. Banks, roads, post offices and restaurants are just some examples where people must wait for service. Studies of queuing phenomena have typically addressed the optimisation of performance measures (e.g. average waiting time, queue length and server utilisation rates) and the analysis of equilibrium solutions. The individual behaviour of the agents involved in queueing systems and their decision making process have received little attention. Although this work has been useful to improve the efficiency of many queueing systems, or to design new processes in social and physical systems, it has only provided us with a limited ability to explain the behaviour observed in many real queues. In this dissertation we differ from this traditional research by analysing how the agents involved in the system make decisions instead of focusing on optimising performance measures or analysing an equilibrium solution. This dissertation builds on and extends the framework proposed by van Ackere and Larsen (2004) and van Ackere et al. (2010). We focus on studying behavioural aspects in queueing systems and incorporate this still underdeveloped framework into the operations management field. In the first chapter of this thesis we provide a general introduction to the area, as well as an overview of the results. In Chapters 2 and 3, we use Cellular Automata (CA) to model service systems where captive interacting customers must decide each period which facility to join for service. They base this decision on their expectations of sojourn times. Each period, customers use new information (their most recent experience and that of their best performing neighbour) to form expectations of sojourn time at the different facilities. Customers update their expectations using an adaptive expectations process to combine their memory and their new information. We label "conservative" those customers who give more weight to their memory than to the xiv Summary new information. In contrast, when they give more weight to new information, we call them "reactive". In Chapter 2, we consider customers with different degree of risk-aversion who take into account uncertainty. They choose which facility to join based on an estimated upper-bound of the sojourn time which they compute using their perceptions of the average sojourn time and the level of uncertainty. We assume the same exogenous service capacity for all facilities, which remains constant throughout. We first analyse the collective behaviour generated by the customers' decisions. We show that the system achieves low weighted average sojourn times when the collective behaviour results in neighbourhoods of customers loyal to a facility and the customers are approximately equally split among all facilities. The lowest weighted average sojourn time is achieved when exactly the same number of customers patronises each facility, implying that they do not wish to switch facility. In this case, the system has achieved the Nash equilibrium. We show that there is a non-monotonic relationship between the degree of risk-aversion and system performance. Customers with an intermediate degree of riskaversion typically achieve higher sojourn times; in particular they rarely achieve the Nash equilibrium. Risk-neutral customers have the highest probability of achieving the Nash Equilibrium. Chapter 3 considers a service system similar to the previous one but with risk-neutral customers, and relaxes the assumption of exogenous service rates. In this sense, we model a queueing system with endogenous service rates by enabling managers to adjust the service capacity of the facilities. We assume that managers do so based on their perceptions of the arrival rates and use the same principle of adaptive expectations to model these perceptions. We consider service systems in which the managers' decisions take time to be implemented. Managers are characterised by a profile which is determined by the speed at which they update their perceptions, the speed at which they take decisions, and how coherent they are when accounting for their previous decisions still to be implemented when taking their next decision. We find that the managers' decisions exhibit a strong path-dependence: owing to the initial conditions of the model, the facilities of managers with identical profiles can evolve completely differently. In some cases the system becomes "locked-in" into a monopoly or duopoly situation. The competition between managers causes the weighted average sojourn time of the system to converge to the exogenous benchmark value which they use to estimate their desired capacity. Concerning the managers' profile, we found that the more conservative Summary xv a manager is regarding new information, the larger the market share his facility achieves. Additionally, the faster he takes decisions, the higher the probability that he achieves a monopoly position. In Chapter 4 we consider a one-server queueing system with non-captive customers. We carry out an experiment aimed at analysing the way human subjects, taking on the role of the manager, take decisions in a laboratory regarding the capacity of a service facility. We adapt the model proposed by van Ackere et al (2010). This model relaxes the assumption of a captive market and allows current customers to decide whether or not to use the facility. Additionally the facility also has potential customers who currently do not patronise it, but might consider doing so in the future. We identify three groups of subjects whose decisions cause similar behavioural patterns. These groups are labelled: gradual investors, lumpy investors, and random investor. Using an autocorrelation analysis of the subjects' decisions, we illustrate that these decisions are positively correlated to the decisions taken one period early. Subsequently we formulate a heuristic to model the decision rule considered by subjects in the laboratory. We found that this decision rule fits very well for those subjects who gradually adjust capacity, but it does not capture the behaviour of the subjects of the other two groups. In Chapter 5 we summarise the results and provide suggestions for further work. Our main contribution is the use of simulation and experimental methodologies to explain the collective behaviour generated by customers' and managers' decisions in queueing systems as well as the analysis of the individual behaviour of these agents. In this way, we differ from the typical literature related to queueing systems which focuses on optimising performance measures and the analysis of equilibrium solutions. Our work can be seen as a first step towards understanding the interaction between customer behaviour and the capacity adjustment process in queueing systems. This framework is still in its early stages and accordingly there is a large potential for further work that spans several research topics. Interesting extensions to this work include incorporating other characteristics of queueing systems which affect the customers' experience (e.g. balking, reneging and jockeying); providing customers and managers with additional information to take their decisions (e.g. service price, quality, customers' profile); analysing different decision rules and studying other characteristics which determine the profile of customers and managers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Tiwi people of northern Australia have managed natural resources continuously for 6000-8000 years. Tiwi management objectives and outcomes may reflect how they gather information about the environment. We qualitatively analyzed Tiwi documents and management techniques to examine the relation between the social and physical environment of decision makers and their decision-making strategies. We hypothesized that principles of bounded rationality, namely, the use of efficient rules to navigate complex decision problems, explain how Tiwi managers use simple decision strategies (i.e., heuristics) to make robust decisions. Tiwi natural resource managers reduced complexity in decision making through a process that gathers incomplete and uncertain information to quickly guide decisions toward effective outcomes. They used management feedback to validate decisions through an information loop that resulted in long-term sustainability of environmental use. We examined the Tiwi decision-making processes relative to management of barramundi (Lates calcarifer) fisheries and contrasted their management with the state government's management of barramundi. Decisions that enhanced the status of individual people and their attainment of aspiration levels resulted in reliable resource availability for Tiwi consumers. Different decision processes adopted by the state for management of barramundi may not secure similarly sustainable outcomes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To resolve the share of limited resources, animals often compete through exchange of signals about their relative motivation to compete. When two competitors are similarly motivated, the resolution of conflicts may be achieved in the course of an interactive process. In barn owls, Tyto alba, in which siblings vocally compete during the prolonged absence of parents over access to the next delivered food item, we investigated what governs the decision to leave or enter a contest, and at which level. Siblings alternated periods during which one of the two individuals vocalized more than the other. Individuals followed turn-taking rules to interrupt each other and momentarily dominate the vocal competition. These social rules were weakly sensitive to hunger level and age hierarchy. Hence, the investment in a conflict is determined not only by need and resource-holding potential, but also by social interactions. The use of turn-taking rules governing individual vocal investment has rarely been shown in a competitive context. We hypothesized that these rules would allow individuals to remain alert to one another's motivation while maintaining the cost of vocalizing at the lowest level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The capacity to learn to associate sensory perceptions with appropriate motor actions underlies the success of many animal species, from insects to humans. The evolutionary significance of learning has long been a subject of interest for evolutionary biologists who emphasize the bene¬fit yielded by learning under changing environmental conditions, where it is required to flexibly switch from one behavior to another. However, two unsolved questions are particularly impor¬tant for improving our knowledge of the evolutionary advantages provided by learning, and are addressed in the present work. First, because it is possible to learn the wrong behavior when a task is too complex, the learning rules and their underlying psychological characteristics that generate truly adaptive behavior must be identified with greater precision, and must be linked to the specific ecological problems faced by each species. A framework for predicting behavior from the definition of a learning rule is developed here. Learning rules capture cognitive features such as the tendency to explore, or the ability to infer rewards associated to unchosen actions. It is shown that these features interact in a non-intuitive way to generate adaptive behavior in social interactions where individuals affect each other's fitness. Such behavioral predictions are used in an evolutionary model to demonstrate that, surprisingly, simple trial-and-error learn¬ing is not always outcompeted by more computationally demanding inference-based learning, when population members interact in pairwise social interactions. A second question in the evolution of learning is its link with and relative advantage compared to other simpler forms of phenotypic plasticity. After providing a conceptual clarification on the distinction between genetically determined vs. learned responses to environmental stimuli, a new factor in the evo¬lution of learning is proposed: environmental complexity. A simple mathematical model shows that a measure of environmental complexity, the number of possible stimuli in one's environ¬ment, is critical for the evolution of learning. In conclusion, this work opens roads for modeling interactions between evolving species and their environment in order to predict how natural se¬lection shapes animals' cognitive abilities. - La capacité d'apprendre à associer des sensations perceptives à des actions motrices appropriées est sous-jacente au succès évolutif de nombreuses espèces, depuis les insectes jusqu'aux êtres hu¬mains. L'importance évolutive de l'apprentissage est depuis longtemps un sujet d'intérêt pour les biologistes de l'évolution, et ces derniers mettent l'accent sur le bénéfice de l'apprentissage lorsque les conditions environnementales sont changeantes, car dans ce cas il est nécessaire de passer de manière flexible d'un comportement à l'autre. Cependant, deux questions non résolues sont importantes afin d'améliorer notre savoir quant aux avantages évolutifs procurés par l'apprentissage. Premièrement, puisqu'il est possible d'apprendre un comportement incorrect quand une tâche est trop complexe, les règles d'apprentissage qui permettent d'atteindre un com¬portement réellement adaptatif doivent être identifiées avec une plus grande précision, et doivent être mises en relation avec les problèmes écologiques spécifiques rencontrés par chaque espèce. Un cadre théorique ayant pour but de prédire le comportement à partir de la définition d'une règle d'apprentissage est développé ici. Il est démontré que les caractéristiques cognitives, telles que la tendance à explorer ou la capacité d'inférer les récompenses liées à des actions non ex¬périmentées, interagissent de manière non-intuitive dans les interactions sociales pour produire des comportements adaptatifs. Ces prédictions comportementales sont utilisées dans un modèle évolutif afin de démontrer que, de manière surprenante, l'apprentissage simple par essai-et-erreur n'est pas toujours battu par l'apprentissage basé sur l'inférence qui est pourtant plus exigeant en puissance de calcul, lorsque les membres d'une population interagissent socialement par pair. Une deuxième question quant à l'évolution de l'apprentissage concerne son lien et son avantage relatif vis-à-vis d'autres formes plus simples de plasticité phénotypique. Après avoir clarifié la distinction entre réponses aux stimuli génétiquement déterminées ou apprises, un nouveau fac¬teur favorisant l'évolution de l'apprentissage est proposé : la complexité environnementale. Un modèle mathématique permet de montrer qu'une mesure de la complexité environnementale - le nombre de stimuli rencontrés dans l'environnement - a un rôle fondamental pour l'évolution de l'apprentissage. En conclusion, ce travail ouvre de nombreuses perspectives quant à la mo¬délisation des interactions entre les espèces en évolution et leur environnement, dans le but de comprendre comment la sélection naturelle façonne les capacités cognitives des animaux.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: Deficits in decision making (DM) are commonly associated with prefrontal cortical damage, but may occur with multiple sclerosis (MS). There are no data concerning the impact of MS on tasks evaluating DM under explicit risk, where different emotional and cognitive components can be distinguished. METHODS: We assessed 72 relapsing-remitting MS (RRMS) patients with mild to moderate disease and 38 healthy controls in two DM tasks involving risk with explicit rules: (1) The Wheel of Fortune (WOF), which probes the anticipated affects of decisions outcomes on future choices; and (2) The Cambridge Gamble Task (CGT) which measures risk taking. Participants also underwent a neuropsychological and emotional assessment, and skin conductance responses (SCRs) were recorded. RESULTS: In the WOF, RRMS patients showed deficits in integrating positive counterfactual information (p<0.005) and greater risk aversion (p<0.001). They reported less negative affect than controls (disappointment: p = 0.007; regret: p = 0.01), although their implicit emotional reactions as measured by post-choice SCRs did not differ. In the CGT, RRMS patients differed from controls in quality of DM (p = 0.01) and deliberation time (p = 0.0002), the latter difference being correlated with attention scores. Such changes did not result in overall decreases in performance (total gains). CONCLUSIONS: The quality of DM under risk was modified by MS in both tasks. The reduction in the expression of disappointment coexisted with an increased risk aversion in the WOF and alexithymia features. These concomitant emotional alterations may have implications for better understanding the components of explicit DM and for the clinical support of MS patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: Hip fractures are responsible for excessive mortality, decreasing the 5-year survival rate by about 20%. From an economic perspective, they represent a major source of expense, with direct costs in hospitalization, rehabilitation, and institutionalization. The incidence rate sharply increases after the age of 70, but it can be reduced in women aged 70-80 years by therapeutic interventions. Recent analyses suggest that the most efficient strategy is to implement such interventions in women at the age of 70 years. As several guidelines recommend bone mineral density (BMD) screening of postmenopausal women with clinical risk factors, our objective was to assess the cost-effectiveness of two screening strategies applied to elderly women aged 70 years and older. METHODS: A cost-effectiveness analysis was performed using decision-tree analysis and a Markov model. Two alternative strategies, one measuring BMD of all women, and one measuring BMD only of those having at least one risk factor, were compared with the reference strategy "no screening". Cost-effectiveness ratios were measured as cost per year gained without hip fracture. Most probabilities were based on data observed in EPIDOS, SEMOF and OFELY cohorts. RESULTS: In this model, which is mostly based on observed data, the strategy "screen all" was more cost effective than "screen women at risk." For one woman screened at the age of 70 and followed for 10 years, the incremental (additional) cost-effectiveness ratio of these two strategies compared with the reference was 4,235 euros and 8,290 euros, respectively. CONCLUSION: The results of this model, under the assumptions described in the paper, suggest that in women aged 70-80 years, screening all women with dual-energy X-ray absorptiometry (DXA) would be more effective than no screening or screening only women with at least one risk factor. Cost-effectiveness studies based on decision-analysis trees maybe useful tools for helping decision makers, and further models based on different assumptions should be performed to improve the level of evidence on cost-effectiveness ratios of the usual screening strategies for osteoporosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: This study sought to increase understanding of women's thoughts and feelings about decision making and the experience of subsequent pregnancy following stillbirth (intrauterine death after 24 weeks' gestation). METHODS: Eleven women were interviewed, 8 of whom were pregnant at the time of the interview. Modified grounded theory was used to guide the research methodology and to analyze the data. RESULTS: A model was developed to illustrate women's experiences of decision making in relation to subsequent pregnancy and of subsequent pregnancy itself. DISCUSSION: The results of the current study have significant implications for women who have experienced stillbirth and the health professionals who work with them. Based on the model, women may find it helpful to discuss their beliefs in relation to healing and health professionals to provide support with this in mind. Women and their partners may also benefit from explanations and support about the potentially conflicting emotions they may experience during this time.