285 resultados para De novo peptide sequencing
em Université de Lausanne, Switzerland
Resumo:
Recent technological progress has greatly facilitated de novo genome sequencing. However, de novo assemblies consist in many pieces of contiguous sequence (contigs) arranged in thousands of scaffolds instead of small numbers of chromosomes. Confirming and improving the quality of such assemblies is critical for subsequent analysis. We present a method to evaluate genome scaffolding by aligning independently obtained transcriptome sequences to the genome and visually summarizing the alignments using the Cytoscape software. Applying this method to the genome of the red fire ant Solenopsis invicta allowed us to identify inconsistencies in 7%, confirm contig order in 20% and extend 16% of scaffolds.Scripts that generate tables for visualization in Cytoscape from FASTA sequence and scaffolding information files are publicly available at https://github.com/ksanao/TGNet.
Resumo:
Restriction site-associated DNA sequencing (RADseq) provides researchers with the ability to record genetic polymorphism across thousands of loci for nonmodel organisms, potentially revolutionizing the field of molecular ecology. However, as with other genotyping methods, RADseq is prone to a number of sources of error that may have consequential effects for population genetic inferences, and these have received only limited attention in terms of the estimation and reporting of genotyping error rates. Here we use individual sample replicates, under the expectation of identical genotypes, to quantify genotyping error in the absence of a reference genome. We then use sample replicates to (i) optimize de novo assembly parameters within the program Stacks, by minimizing error and maximizing the retrieval of informative loci; and (ii) quantify error rates for loci, alleles and single-nucleotide polymorphisms. As an empirical example, we use a double-digest RAD data set of a nonmodel plant species, Berberis alpina, collected from high-altitude mountains in Mexico.
Resumo:
Twelve primers to amplify microsatellite markers from the chloroplast genome of Lolium perenne were designed and optimized using de novo sequencing and in silico sequences. With one exception, each locus was polymorphic with a range from two to nine alleles in L. perenne. The newly developed primer pairs cross-amplified in different species of Lolium and in 50 other grass species representing nine grass subfamilies.
Resumo:
Restriction site-associated DNA sequencing (RADseq) provides researchers with the ability to record genetic polymorphism across thousands of loci for nonmodel organisms, potentially revolutionizing the field of molecular ecology. However, as with other genotyping methods, RADseq is prone to a number of sources of error that may have consequential effects for population genetic inferences, and these have received only limited attention in terms of the estimation and reporting of genotyping error rates. Here we use individual sample replicates, under the expectation of identical genotypes, to quantify genotyping error in the absence of a reference genome. We then use sample replicates to (i) optimize de novo assembly parameters within the program Stacks, by minimizing error and maximizing the retrieval of informative loci; and (ii) quantify error rates for loci, alleles and single-nucleotide polymorphisms. As an empirical example, we use a double-digest RAD data set of a nonmodel plant species, Berberis alpina, collected from high-altitude mountains in Mexico.
Resumo:
Exogenously added synthetic peptides can mimic endogenously produced antigenic peptides recognized on target cells by MHC class I-restricted cytolytic T lymphocytes. While it is assumed that exogenous peptides associate with class I molecules on the target cell surface, direct binding of peptides to cell-associated class I molecules has been difficult to demonstrate. Using a newly developed binding assay based on photoaffinity labeling, we have investigated the interaction of two antigenic peptides, known to be recognized in the context of H-2Kd or H-2Db, respectively, with 20 distinct class I alleles on living cells. None of the class I alleles tested, with the exception of H-2Kd or H-2Db, bound either of the peptides, thus demonstrating the exquisite specificity of peptide binding to class I molecules. Moreover, peptide binding to cell-associated H-2Kd was drastically reduced when metabolic energy, de novo protein synthesis or protein egress from the endoplasmic reticulum was inhibited. It is thus likely that exogenously added peptides do not associate with the bulk of class I molecules expressed at the cell surface, but rather bind to short-lived molecules devoid of endogenous peptides.
Resumo:
We report a 26-year-old female patient who was diagnosed within 4 years with chest sarcoma, lung adenocarcinoma, and breast cancer. While her family history was unremarkable, DNA sequencing of TP53 revealed a germline de novo non-sense mutation in exon 6 p.Arg213X. One year later, she further developed a contralateral ductal carcinoma in situ, and 18 months later a jaw osteosarcoma. This case illustrates the therapeutic pitfalls in the care of a young cancer patient with TP53 de novo germline mutations and the complications related to her first-line therapy. Suggestion is made to use the less stringent Chompret criteria for germline TP53 mutation screening. Our observation underlines the possibly negative effect of radiotherapy in generating second tumors in patients with a TP53 mutation. We also present a review of six previously reported cases, comparing their cancer phenotypes with those generally produced by TP53 mutations.
Resumo:
Since the turn of the century the complete genome sequence of just one mouse strain, C57BL/6J, has been available. Knowing the sequence of this strain has enabled large-scale forward genetic screens to be performed, the creation of an almost complete set of embryonic stem (ES) cell lines with targeted alleles for protein-coding genes, and the generation of a rich catalog of mouse genomic variation. However, many experiments that use other common laboratory mouse strains have been hindered by a lack of whole-genome sequence data for these strains. The last 5 years has witnessed a revolution in DNA sequencing technologies. Recently, these technologies have been used to expand the repertoire of fully sequenced mouse genomes. In this article we review the main findings of these studies and discuss how the sequence of mouse genomes is helping pave the way from sequence to phenotype. Finally, we discuss the prospects for using de novo assembly techniques to obtain high-quality assembled genome sequences of these laboratory mouse strains, and what advances in sequencing technologies may be required to achieve this goal.
Resumo:
Adaptation to different ecological environments can promote speciation. Although numerous examples of such 'ecological speciation' now exist, the genomic basis of the process, and the role of gene flow in it, remains less understood. This is, at least in part, because systems that are well characterized in terms of their ecology often lack genomic resources. In this study, we characterize the transcriptome of Timema cristinae stick insects, a system that has been researched intensively in terms of ecological speciation, but for which genomic resources have not been previously developed. Specifically, we obtained >1 million 454 sequencing reads that assembled into 84,937 contigs representing approximately 18,282 unique genes and tens of thousands of potential molecular markers. Second, as an illustration of their utility, we used these genomic resources to assess multilocus genetic divergence within both an ecotype pair and a species pair of Timema stick insects. The results suggest variable levels of genetic divergence and gene flow among taxon pairs and genes and illustrate a first step towards future genomic work in Timema.
Resumo:
Since the advent of high-throughput DNA sequencing technologies, the ever-increasing rate at which genomes have been published has generated new challenges notably at the level of genome annotation. Even if gene predictors and annotation softwares are more and more efficient, the ultimate validation is still in the observation of predicted gene product( s). Mass-spectrometry based proteomics provides the necessary high throughput technology to show evidences of protein presence and, from the identified sequences, confirmation or invalidation of predicted annotations. We review here different strategies used to perform a MS-based proteogenomics experiment with a bottom-up approach. We start from the strengths and weaknesses of the different database construction strategies, based on different genomic information (whole genome, ORF, cDNA, EST or RNA-Seq data), which are then used for matching mass spectra to peptides and proteins. We also review the important points to be considered for a correct statistical assessment of the peptide identifications. Finally, we provide references for tools used to map and visualize the peptide identifications back to the original genomic information.
Resumo:
HLA-A2+ melanoma patients develop naturally a strong CD8+ T cell response to a self-peptide derived from Melan-A. Here, we have used HLA-A2/peptide tetramers to isolate Melan-A-specific T cells from tumor-infiltrated lymph nodes of two HLA-A2+ melanoma patients and analyzed their TCR beta chain V segment and complementarity determining region 3 length and sequence. We found a broad diversity in Melan-A-specific immune T-cell receptor (TCR) repertoires in terms of both TCR beta chain variable gene segment usage and clonal composition. In addition, immune TCR repertoires selected in the patients were not overlapping. In contrast to previously characterized CD8+ T-cell responses to viral infections, this study provides evidence against usage of highly restricted TCR repertoire in the natural response to a self-differentiation tumor antigen.
Resumo:
Among the largest resources for biological sequence data is the large amount of expressed sequence tags (ESTs) available in public and proprietary databases. ESTs provide information on transcripts but for technical reasons they often contain sequencing errors. Therefore, when analyzing EST sequences computationally, such errors must be taken into account. Earlier attempts to model error prone coding regions have shown good performance in detecting and predicting these while correcting sequencing errors using codon usage frequencies. In the research presented here, we improve the detection of translation start and stop sites by integrating a more complex mRNA model with codon usage bias based error correction into one hidden Markov model (HMM), thus generalizing this error correction approach to more complex HMMs. We show that our method maintains the performance in detecting coding sequences.
Resumo:
We have used massively parallel signature sequencing (MPSS) to sample the transcriptomes of 32 normal human tissues to an unprecedented depth, thus documenting the patterns of expression of almost 20,000 genes with high sensitivity and specificity. The data confirm the widely held belief that differences in gene expression between cell and tissue types are largely determined by transcripts derived from a limited number of tissue-specific genes, rather than by combinations of more promiscuously expressed genes. Expression of a little more than half of all known human genes seems to account for both the common requirements and the specific functions of the tissues sampled. A classification of tissues based on patterns of gene expression largely reproduces classifications based on anatomical and biochemical properties. The unbiased sampling of the human transcriptome achieved by MPSS supports the idea that most human genes have been mapped, if not functionally characterized. This data set should prove useful for the identification of tissue-specific genes, for the study of global changes induced by pathological conditions, and for the definition of a minimal set of genes necessary for basic cell maintenance. The data are available on the Web at http://mpss.licr.org and http://sgb.lynxgen.com.
Resumo:
PURPOSE: The Cancer Vaccine Consortium of the Cancer Research Institute (CVC-CRI) conducted a multicenter HLA-peptide multimer proficiency panel (MPP) with a group of 27 laboratories to assess the performance of the assay. EXPERIMENTAL DESIGN: Participants used commercially available HLA-peptide multimers and a well characterized common source of peripheral blood mononuclear cells (PBMC). The frequency of CD8+ T cells specific for two HLA-A2-restricted model antigens was measured by flow cytometry. The panel design allowed for participants to use their preferred staining reagents and locally established protocols for both cell labeling, data acquisition and analysis. RESULTS: We observed significant differences in both the performance characteristics of the assay and the reported frequencies of specific T cells across laboratories. These results emphasize the need to identify the critical variables important for the observed variability to allow for harmonization of the technique across institutions. CONCLUSIONS: Three key recommendations emerged that would likely reduce assay variability and thus move toward harmonizing of this assay. (1) Use of more than two colors for the staining (2) collect at least 100,000 CD8 T cells, and (3) use of a background control sample to appropriately set the analytical gates. We also provide more insight into the limitations of the assay and identified additional protocol steps that potentially impact the quality of data generated and therefore should serve as primary targets for systematic analysis in future panels. Finally, we propose initial guidelines for harmonizing assay performance which include the introduction of standard operating protocols to allow for adequate training of technical staff and auditing of test analysis procedures.
Resumo:
Novel cancer vaccines are capableto efficiently induce and boost humantumor antigen specific T-cells. However,the properties of these CD8T-cells are only partially characterized.For in depth investigation ofT-cells following Melan-A/MART-1peptide vaccination in melanoma patients,we conducted a detailed prospectivestudy at the single cell level.We first sorted individual human naiveand effector CD8 T-cells from peripheralblood by flow cytometry, andtested a modified RT-PCR protocolincluding a global amplification ofexpressed mRNAs to obtain sufficientcDNAfromsingle cells.We successfullydetected the expression ofseveral specific genes of interest evendown to 106-fold dilution (equivalentto 10-5 cell). We then analyzed tumor-specific effector memory (EM)CD8T-cell subpopulations ex vivo, assingle cells from vaccinated melanomapatients. To elucidate the hallmarksof effective immunity the genesignatures were defined by a panel ofgenes related to effector functions(e.g. IFN-, granzyme B, perforin),and individual clonotypes were identifiedaccording to the expression ofdistinct T-cell receptors (TCR). Usingthis novel single cell analysis approach,we observed that T-cell differentiationis clonotype dependent,with a progressive restriction in TCRBV clonotype diversity from EMCD28pos to EMCD28neg subsets. However,the effector function gene imprintingis clonotype-independent,but dependent on differentiation,since it correlates with the subset oforigin (EMCD28pos or EMCD28neg). We also conducted a detailedcomparative analysis after vaccinationwith natural vs. analog Melan-Apeptide. We found that the peptideused for vaccination determines thefunctional outcome of individualT-cell clonotypes, with native peptideinducing more potent effector functions.Yet, selective clonotypic expansionwith differentiation was preservedregardless of the peptide usedfor vaccination. In summary, the exvivo single cell RT-PCR approach ishighly sensitive and efficient, andrepresents a reliable and powerfultool to refine our current view of molecularprocesses taking place duringT-cell differentiation.