73 resultados para Data portal performance
em Université de Lausanne, Switzerland
Resumo:
1. Model-based approaches have been used increasingly in conservation biology over recent years. Species presence data used for predictive species distribution modelling are abundant in natural history collections, whereas reliable absence data are sparse, most notably for vagrant species such as butterflies and snakes. As predictive methods such as generalized linear models (GLM) require absence data, various strategies have been proposed to select pseudo-absence data. However, only a few studies exist that compare different approaches to generating these pseudo-absence data. 2. Natural history collection data are usually available for long periods of time (decades or even centuries), thus allowing historical considerations. However, this historical dimension has rarely been assessed in studies of species distribution, although there is great potential for understanding current patterns, i.e. the past is the key to the present. 3. We used GLM to model the distributions of three 'target' butterfly species, Melitaea didyma, Coenonympha tullia and Maculinea teleius, in Switzerland. We developed and compared four strategies for defining pools of pseudo-absence data and applied them to natural history collection data from the last 10, 30 and 100 years. Pools included: (i) sites without target species records; (ii) sites where butterfly species other than the target species were present; (iii) sites without butterfly species but with habitat characteristics similar to those required by the target species; and (iv) a combination of the second and third strategies. Models were evaluated and compared by the total deviance explained, the maximized Kappa and the area under the curve (AUC). 4. Among the four strategies, model performance was best for strategy 3. Contrary to expectations, strategy 2 resulted in even lower model performance compared with models with pseudo-absence data simulated totally at random (strategy 1). 5. Independent of the strategy model, performance was enhanced when sites with historical species presence data were not considered as pseudo-absence data. Therefore, the combination of strategy 3 with species records from the last 100 years achieved the highest model performance. 6. Synthesis and applications. The protection of suitable habitat for species survival or reintroduction in rapidly changing landscapes is a high priority among conservationists. Model-based approaches offer planning authorities the possibility of delimiting priority areas for species detection or habitat protection. The performance of these models can be enhanced by fitting them with pseudo-absence data relying on large archives of natural history collection species presence data rather than using randomly sampled pseudo-absence data.
Resumo:
1. Identifying the boundary of a species' niche from observational and environmental data is a common problem in ecology and conservation biology and a variety of techniques have been developed or applied to model niches and predict distributions. Here, we examine the performance of some pattern-recognition methods as ecological niche models (ENMs). Particularly, one-class pattern recognition is a flexible and seldom used methodology for modelling ecological niches and distributions from presence-only data. The development of one-class methods that perform comparably to two-class methods (for presence/absence data) would remove modelling decisions about sampling pseudo-absences or background data points when absence points are unavailable. 2. We studied nine methods for one-class classification and seven methods for two-class classification (five common to both), all primarily used in pattern recognition and therefore not common in species distribution and ecological niche modelling, across a set of 106 mountain plant species for which presence-absence data was available. We assessed accuracy using standard metrics and compared trade-offs in omission and commission errors between classification groups as well as effects of prevalence and spatial autocorrelation on accuracy. 3. One-class models fit to presence-only data were comparable to two-class models fit to presence-absence data when performance was evaluated with a measure weighting omission and commission errors equally. One-class models were superior for reducing omission errors (i.e. yielding higher sensitivity), and two-classes models were superior for reducing commission errors (i.e. yielding higher specificity). For these methods, spatial autocorrelation was only influential when prevalence was low. 4. These results differ from previous efforts to evaluate alternative modelling approaches to build ENM and are particularly noteworthy because data are from exhaustively sampled populations minimizing false absence records. Accurate, transferable models of species' ecological niches and distributions are needed to advance ecological research and are crucial for effective environmental planning and conservation; the pattern-recognition approaches studied here show good potential for future modelling studies. This study also provides an introduction to promising methods for ecological modelling inherited from the pattern-recognition discipline.
Resumo:
BACKGROUND: A relative inability to capture a sufficiently large patient population in any one geographic location has traditionally limited research into rare diseases. METHODS AND RESULTS: Clinicians interested in the rare disease lymphangioleiomyomatosis (LAM) have worked with the LAM Treatment Alliance, the MIT Media Lab, and Clozure Associates to cooperate in the design of a state-of-the-art data coordination platform that can be used for clinical trials and other research focused on the global LAM patient population. This platform is a component of a set of web-based resources, including a patient self-report data portal, aimed at accelerating research in rare diseases in a rigorous fashion. CONCLUSIONS: Collaboration between clinicians, researchers, advocacy groups, and patients can create essential community resource infrastructure to accelerate rare disease research. The International LAM Registry is an example of such an effort. 82.
Resumo:
For the last 2 decades, supertree reconstruction has been an active field of research and has seen the development of a large number of major algorithms. Because of the growing popularity of the supertree methods, it has become necessary to evaluate the performance of these algorithms to determine which are the best options (especially with regard to the supermatrix approach that is widely used). In this study, seven of the most commonly used supertree methods are investigated by using a large empirical data set (in terms of number of taxa and molecular markers) from the worldwide flowering plant family Sapindaceae. Supertree methods were evaluated using several criteria: similarity of the supertrees with the input trees, similarity between the supertrees and the total evidence tree, level of resolution of the supertree and computational time required by the algorithm. Additional analyses were also conducted on a reduced data set to test if the performance levels were affected by the heuristic searches rather than the algorithms themselves. Based on our results, two main groups of supertree methods were identified: on one hand, the matrix representation with parsimony (MRP), MinFlip, and MinCut methods performed well according to our criteria, whereas the average consensus, split fit, and most similar supertree methods showed a poorer performance or at least did not behave the same way as the total evidence tree. Results for the super distance matrix, that is, the most recent approach tested here, were promising with at least one derived method performing as well as MRP, MinFlip, and MinCut. The output of each method was only slightly improved when applied to the reduced data set, suggesting a correct behavior of the heuristic searches and a relatively low sensitivity of the algorithms to data set sizes and missing data. Results also showed that the MRP analyses could reach a high level of quality even when using a simple heuristic search strategy, with the exception of MRP with Purvis coding scheme and reversible parsimony. The future of supertrees lies in the implementation of a standardized heuristic search for all methods and the increase in computing power to handle large data sets. The latter would prove to be particularly useful for promising approaches such as the maximum quartet fit method that yet requires substantial computing power.
Resumo:
Continuous field mapping has to address two conflicting remote sensing requirements when collecting training data. On one hand, continuous field mapping trains fractional land cover and thus favours mixed training pixels. On the other hand, the spectral signature has to be preferably distinct and thus favours pure training pixels. The aim of this study was to evaluate the sensitivity of training data distribution along fractional and spectral gradients on the resulting mapping performance. We derived four continuous fields (tree, shrubherb, bare, water) from aerial photographs as response variables and processed corresponding spectral signatures from multitemporal Landsat 5 TM data as explanatory variables. Subsequent controlled experiments along fractional cover gradients were then based on generalised linear models. Resulting fractional and spectral distribution differed between single continuous fields, but could be satisfactorily trained and mapped. Pixels with fractional or without respective cover were much more critical than pure full cover pixels. Error distribution of continuous field models was non-uniform with respect to horizontal and vertical spatial distribution of target fields. We conclude that a sampling for continuous field training data should be based on extent and densities in the fractional and spectral, rather than the real spatial space. Consequently, adequate training plots are most probably not systematically distributed in the real spatial space, but cover the gradient and covariate structure of the fractional and spectral space well. (C) 2009 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.
Resumo:
OBJECTIVE: To assess the impact of liver hypertrophy of the future liver remnant volume (FLR) induced by preoperative portal vein embolization (PVE) on the immediate postoperative complications after a standardized major liver resection. SUMMARY BACKGROUND DATA: PVE is usually indicated when FLR is estimated to be too small for major liver resection. However, few data exist regarding the exact quantification of sufficient minimal functional hepatic volume required to avoid postoperative complications in both patients with or without chronic liver disease. METHODS: All consecutive patients in whom an elective right hepatectomy was feasible and who fulfilled the inclusion and exclusion criteria between 1998 and 2000 were assigned to have alternatively either immediate surgery or surgery after PVE. Among 55 patients (25 liver metastases, 2 cholangiocarcinoma, and 28 hepatocellular carcinoma), 28 underwent right hepatectomy after PVE and 27 underwent immediate surgery. Twenty-eight patients had chronic liver disease. FLR and estimated rate of functional future liver remnant (%FFLR) volumes were assessed by computed tomography. RESULTS: The mean increase of FLR and %FFLR 4 to 8 weeks after PVE were respectively 44 +/- 19% and 16 +/- 7% for patients with normal liver and 35 +/- 28% and 9 +/- 3% for those with chronic liver disease. All patients with normal liver and 86% with chronic liver disease experienced hypertrophy after PVE. The postoperative course of patients with normal liver who underwent PVE before right hepatectomy was similar to those with immediate surgery. In contrast, PVE in patients with chronic liver disease significantly decreased the incidence of postoperative complications as well as the intensive care unit stay and total hospital stay after right hepatectomy. CONCLUSIONS: Before elective right hepatectomy, the hypertrophy of FLR induced by PVE had no beneficial effect on the postoperative course in patients with normal liver. In contrast, in patients with chronic liver disease, the hypertrophy of the FLR induced by PVE decreased significantly the rate of postoperative complications.
Resumo:
Background/Aims: Cognitive dysfunction after medical treatment is increasingly being recognized. Studies on this topic require repeated cognitive testing within a short time. However, with repeated testing, practice effects must be expected. We quantified practice effects in a demographically corrected summary score of a neuropsychological test battery repeatedly administered to healthy elderly volunteers. Methods: The Consortium to Establish a Registry for Alzheimer's Disease (CERAD) Neuropsychological Assessment Battery (for which a demographically corrected summary score was developed), phonemic fluency tests, and trail-making tests were administered in healthy volunteers aged 65 years or older on days 0, 7, and 90. This battery allows calculation of a demographically adjusted continuous summary score. Results: Significant practice effects were observed in the CERAD total score and in the word list (learning and recall) subtest. Based on these volunteer data, we developed a threshold for diagnosis of postoperative cognitive dysfunction (POCD) with the CERAD total score. Conclusion: Practice effects with repeated administration of neuropsychological tests must be accounted for in the interpretation of such tests. Ignoring practice effects may lead to an underestimation of POCD. The usefulness of the proposed demographically adjusted continuous score for cognitive function will have to be tested prospectively in patients.
Resumo:
Excessive exposure to solar ultraviolet (UV) is the main cause of skin cancer. Specific prevention should be further developed to target overexposed or highly vulnerable populations. A better characterisation of anatomical UV exposure patterns is however needed for specific prevention. To develop a regression model for predicting the UV exposure ratio (ER, ratio between the anatomical dose and the corresponding ground level dose) for each body site without requiring individual measurements. A 3D numeric model (SimUVEx) was used to compute ER for various body sites and postures. A multiple fractional polynomial regression analysis was performed to identify predictors of ER. The regression model used simulation data and its performance was tested on an independent data set. Two input variables were sufficient to explain ER: the cosine of the maximal daily solar zenith angle and the fraction of the sky visible from the body site. The regression model was in good agreement with the simulated data ER (R(2)=0.988). Relative errors up to +20% and -10% were found in daily doses predictions, whereas an average relative error of only 2.4% (-0.03% to 5.4%) was found in yearly dose predictions. The regression model predicts accurately ER and UV doses on the basis of readily available data such as global UV erythemal irradiance measured at ground surface stations or inferred from satellite information. It renders the development of exposure data on a wide temporal and geographical scale possible and opens broad perspectives for epidemiological studies and skin cancer prevention.
Resumo:
This guide introduces Data Envelopment Analysis (DEA), a performance measurement technique, in such a way as to be appropriate to decision makers with little or no background in economics and operational research. The use of mathematics is kept to a minimum. This guide therefore adopts a strong practical approach in order to allow decision makers to conduct their own efficiency analysis and to easily interpret results. DEA helps decision makers for the following reasons: - By calculating an efficiency score, it indicates if a firm is efficient or has capacity for improvement. - By setting target values for input and output, it calculates how much input must be decreased or output increased in order to become efficient. - By identifying the nature of returns to scale, it indicates if a firm has to decrease or increase its scale (or size) in order to minimize the average cost. - By identifying a set of benchmarks, it specifies which other firms' processes need to be analysed in order to improve its own practices.
Resumo:
BACKGROUND: Pathogen reduction of platelets (PRT-PLTs) using riboflavin and ultraviolet light treatment has undergone Phase 1 and 2 studies examining efficacy and safety. This randomized controlled clinical trial (RCT) assessed the efficacy and safety of PRT-PLTs using the 1-hour corrected count increment (CCI(1hour) ) as the primary outcome. STUDY DESIGN AND METHODS: A noninferiority RCT was performed where patients with chemotherapy-induced thrombocytopenia (six centers) were randomly allocated to receive PRT-PLTs (Mirasol PRT, CaridianBCT Biotechnologies) or reference platelet (PLT) products. The treatment period was 28 days followed by a 28-day follow-up (safety) period. The primary outcome was the CCI(1hour) determined using up to the first eight on-protocol PLT transfusions given during the treatment period. RESULTS: A total of 118 patients were randomly assigned (60 to PRT-PLTs; 58 to reference). Four patients per group did not require PLT transfusions leaving 110 patients in the analysis (56 PRT-PLTs; 54 reference). A total of 541 on-protocol PLT transfusions were given (303 PRT-PLTs; 238 reference). The least square mean CCI was 11,725 (standard error [SE], 1.140) for PRT-PLTs and 16,939 (SE, 1.149) for the reference group (difference, -5214; 95% confidence interval, -7542 to -2887; p<0.0001 for a test of the null hypothesis of no difference between the two groups). CONCLUSION: The study failed to show noninferiority of PRT-PLTs based on predefined CCI criteria. PLT and red blood cell utilization in the two groups was not significantly different suggesting that the slightly lower CCIs (PRT-PLTs) did not increase blood product utilization. Safety data showed similar findings in the two groups. Further studies are required to determine if the lower CCI observed with PRT-PLTs translates into an increased risk of bleeding.
Resumo:
Tobacco consumption is a global epidemic responsible for a vast burden of disease. With pharmacological properties sought-after by consumers and responsible for addiction issues, nicotine is the main reason of this phenomenon. Accordingly, smokeless tobacco products are of growing popularity in sport owing to potential performance enhancing properties and absence of adverse effects on the respiratory system. Nevertheless, nicotine does not appear on the 2011 World Anti-Doping Agency (WADA) Prohibited List or Monitoring Program by lack of a comprehensive large-scale prevalence survey. Thus, this work describes a one-year monitoring study on urine specimens from professional athletes of different disciplines covering 2010 and 2011. A method for the detection and quantification of nicotine, its major metabolites (cotinine, trans-3-hydroxycotinine, nicotine-N'-oxide and cotinine-N-oxide) and minor tobacco alkaloids (anabasine, anatabine and nornicotine) was developed, relying on ultra-high pressure liquid chromatography coupled to triple quadrupole mass spectrometry (UHPLC-TQ-MS/MS). A simple and fast dilute-and-shoot sample treatment was performed, followed by hydrophilic interaction chromatography-tandem mass spectrometry (HILIC-MS/MS) operated in positive electrospray ionization (ESI) mode with multiple reaction monitoring (MRM) data acquisition. After method validation, assessing the prevalence of nicotine consumption in sport involved analysis of 2185 urine samples, accounting for 43 different sports. Concentrations distribution of major nicotine metabolites, minor nicotine metabolites and tobacco alkaloids ranged from 10 (LLOQ) to 32,223, 6670 and 538 ng/mL, respectively. Compounds of interest were detected in trace levels in 23.0% of urine specimens, with concentration levels corresponding to an exposure within the last three days for 18.3% of samples. Likewise, hypothesizing conservative concentration limits for active nicotine consumption prior and/or during sport practice (50 ng/mL for nicotine, cotinine and trans-3-hydroxycotinine and 25 ng/mL for nicotine-N'-oxide, cotinine-N-oxide, anabasine, anatabine and nornicotine) revealed a prevalence of 15.3% amongst athletes. While this number may appear lower than the worldwide smoking prevalence of around 25%, focusing the study on selected sports highlighted more alarming findings. Indeed, active nicotine consumption in ice hockey, skiing, biathlon, bobsleigh, skating, football, basketball, volleyball, rugby, American football, wrestling and gymnastics was found to range between 19.0 and 55.6%. Therefore, considering the adverse effects of smoking on the respiratory tract and numerous health threats detrimental to sport practice at top level, likelihood of smokeless tobacco consumption for performance enhancement is greatly supported.
Resumo:
SUMMARYSpecies distribution models (SDMs) represent nowadays an essential tool in the research fields of ecology and conservation biology. By combining observations of species occurrence or abundance with information on the environmental characteristic of the observation sites, they can provide information on the ecology of species, predict their distributions across the landscape or extrapolate them to other spatial or time frames. The advent of SDMs, supported by geographic information systems (GIS), new developments in statistical models and constantly increasing computational capacities, has revolutionized the way ecologists can comprehend species distributions in their environment. SDMs have brought the tool that allows describing species realized niches across a multivariate environmental space and predict their spatial distribution. Predictions, in the form of probabilistic maps showing the potential distribution of the species, are an irreplaceable mean to inform every single unit of a territory about its biodiversity potential. SDMs and the corresponding spatial predictions can be used to plan conservation actions for particular species, to design field surveys, to assess the risks related to the spread of invasive species, to select reserve locations and design reserve networks, and ultimately, to forecast distributional changes according to scenarios of climate and/or land use change.By assessing the effect of several factors on model performance and on the accuracy of spatial predictions, this thesis aims at improving techniques and data available for distribution modelling and at providing the best possible information to conservation managers to support their decisions and action plans for the conservation of biodiversity in Switzerland and beyond. Several monitoring programs have been put in place from the national to the global scale, and different sources of data now exist and start to be available to researchers who want to model species distribution. However, because of the lack of means, data are often not gathered at an appropriate resolution, are sampled only over limited areas, are not spatially explicit or do not provide a sound biological information. A typical example of this is data on 'habitat' (sensu biota). Even though this is essential information for an effective conservation planning, it often has to be approximated from land use, the closest available information. Moreover, data are often not sampled according to an established sampling design, which can lead to biased samples and consequently to spurious modelling results. Understanding the sources of variability linked to the different phases of the modelling process and their importance is crucial in order to evaluate the final distribution maps that are to be used for conservation purposes.The research presented in this thesis was essentially conducted within the framework of the Landspot Project, a project supported by the Swiss National Science Foundation. The main goal of the project was to assess the possible contribution of pre-modelled 'habitat' units to model the distribution of animal species, in particular butterfly species, across Switzerland. While pursuing this goal, different aspects of data quality, sampling design and modelling process were addressed and improved, and implications for conservation discussed. The main 'habitat' units considered in this thesis are grassland and forest communities of natural and anthropogenic origin as defined in the typology of habitats for Switzerland. These communities are mainly defined at the phytosociological level of the alliance. For the time being, no comprehensive map of such communities is available at the national scale and at fine resolution. As a first step, it was therefore necessary to create distribution models and maps for these communities across Switzerland and thus to gather and collect the necessary data. In order to reach this first objective, several new developments were necessary such as the definition of expert models, the classification of the Swiss territory in environmental domains, the design of an environmentally stratified sampling of the target vegetation units across Switzerland, the development of a database integrating a decision-support system assisting in the classification of the relevés, and the downscaling of the land use/cover data from 100 m to 25 m resolution.The main contributions of this thesis to the discipline of species distribution modelling (SDM) are assembled in four main scientific papers. In the first, published in Journal of Riogeography different issues related to the modelling process itself are investigated. First is assessed the effect of five different stepwise selection methods on model performance, stability and parsimony, using data of the forest inventory of State of Vaud. In the same paper are also assessed: the effect of weighting absences to ensure a prevalence of 0.5 prior to model calibration; the effect of limiting absences beyond the environmental envelope defined by presences; four different methods for incorporating spatial autocorrelation; and finally, the effect of integrating predictor interactions. Results allowed to specifically enhance the GRASP tool (Generalized Regression Analysis and Spatial Predictions) that now incorporates new selection methods and the possibility of dealing with interactions among predictors as well as spatial autocorrelation. The contribution of different sources of remotely sensed information to species distribution models was also assessed. The second paper (to be submitted) explores the combined effects of sample size and data post-stratification on the accuracy of models using data on grassland distribution across Switzerland collected within the framework of the Landspot project and supplemented with other important vegetation databases. For the stratification of the data, different spatial frameworks were compared. In particular, environmental stratification by Swiss Environmental Domains was compared to geographical stratification either by biogeographic regions or political states (cantons). The third paper (to be submitted) assesses the contribution of pre- modelled vegetation communities to the modelling of fauna. It is a two-steps approach that combines the disciplines of community ecology and spatial ecology and integrates their corresponding concepts of habitat. First are modelled vegetation communities per se and then these 'habitat' units are used in order to model animal species habitat. A case study is presented with grassland communities and butterfly species. Different ways of integrating vegetation information in the models of butterfly distribution were also evaluated. Finally, a glimpse to climate change is given in the fourth paper, recently published in Ecological Modelling. This paper proposes a conceptual framework for analysing range shifts, namely a catalogue of the possible patterns of change in the distribution of a species along elevational or other environmental gradients and an improved quantitative methodology to identify and objectively describe these patterns. The methodology was developed using data from the Swiss national common breeding bird survey and the article presents results concerning the observed shifts in the elevational distribution of breeding birds in Switzerland.The overall objective of this thesis is to improve species distribution models as potential inputs for different conservation tools (e.g. red lists, ecological networks, risk assessment of the spread of invasive species, vulnerability assessment in the context of climate change). While no conservation issues or tools are directly tested in this thesis, the importance of the proposed improvements made in species distribution modelling is discussed in the context of the selection of reserve networks.RESUMELes modèles de distribution d'espèces (SDMs) représentent aujourd'hui un outil essentiel dans les domaines de recherche de l'écologie et de la biologie de la conservation. En combinant les observations de la présence des espèces ou de leur abondance avec des informations sur les caractéristiques environnementales des sites d'observation, ces modèles peuvent fournir des informations sur l'écologie des espèces, prédire leur distribution à travers le paysage ou l'extrapoler dans l'espace et le temps. Le déploiement des SDMs, soutenu par les systèmes d'information géographique (SIG), les nouveaux développements dans les modèles statistiques, ainsi que la constante augmentation des capacités de calcul, a révolutionné la façon dont les écologistes peuvent comprendre la distribution des espèces dans leur environnement. Les SDMs ont apporté l'outil qui permet de décrire la niche réalisée des espèces dans un espace environnemental multivarié et prédire leur distribution spatiale. Les prédictions, sous forme de carte probabilistes montrant la distribution potentielle de l'espèce, sont un moyen irremplaçable d'informer chaque unité du territoire de sa biodiversité potentielle. Les SDMs et les prédictions spatiales correspondantes peuvent être utilisés pour planifier des mesures de conservation pour des espèces particulières, pour concevoir des plans d'échantillonnage, pour évaluer les risques liés à la propagation d'espèces envahissantes, pour choisir l'emplacement de réserves et les mettre en réseau, et finalement, pour prévoir les changements de répartition en fonction de scénarios de changement climatique et/ou d'utilisation du sol. En évaluant l'effet de plusieurs facteurs sur la performance des modèles et sur la précision des prédictions spatiales, cette thèse vise à améliorer les techniques et les données disponibles pour la modélisation de la distribution des espèces et à fournir la meilleure information possible aux gestionnaires pour appuyer leurs décisions et leurs plans d'action pour la conservation de la biodiversité en Suisse et au-delà. Plusieurs programmes de surveillance ont été mis en place de l'échelle nationale à l'échelle globale, et différentes sources de données sont désormais disponibles pour les chercheurs qui veulent modéliser la distribution des espèces. Toutefois, en raison du manque de moyens, les données sont souvent collectées à une résolution inappropriée, sont échantillonnées sur des zones limitées, ne sont pas spatialement explicites ou ne fournissent pas une information écologique suffisante. Un exemple typique est fourni par les données sur 'l'habitat' (sensu biota). Même s'il s'agit d'une information essentielle pour des mesures de conservation efficaces, elle est souvent approximée par l'utilisation du sol, l'information qui s'en approche le plus. En outre, les données ne sont souvent pas échantillonnées selon un plan d'échantillonnage établi, ce qui biaise les échantillons et par conséquent les résultats de la modélisation. Comprendre les sources de variabilité liées aux différentes phases du processus de modélisation s'avère crucial afin d'évaluer l'utilisation des cartes de distribution prédites à des fins de conservation.La recherche présentée dans cette thèse a été essentiellement menée dans le cadre du projet Landspot, un projet soutenu par le Fond National Suisse pour la Recherche. L'objectif principal de ce projet était d'évaluer la contribution d'unités 'd'habitat' pré-modélisées pour modéliser la répartition des espèces animales, notamment de papillons, à travers la Suisse. Tout en poursuivant cet objectif, différents aspects touchant à la qualité des données, au plan d'échantillonnage et au processus de modélisation sont abordés et améliorés, et leurs implications pour la conservation des espèces discutées. Les principaux 'habitats' considérés dans cette thèse sont des communautés de prairie et de forêt d'origine naturelle et anthropique telles que définies dans la typologie des habitats de Suisse. Ces communautés sont principalement définies au niveau phytosociologique de l'alliance. Pour l'instant aucune carte de la distribution de ces communautés n'est disponible à l'échelle nationale et à résolution fine. Dans un premier temps, il a donc été nécessaire de créer des modèles de distribution de ces communautés à travers la Suisse et par conséquent de recueillir les données nécessaires. Afin d'atteindre ce premier objectif, plusieurs nouveaux développements ont été nécessaires, tels que la définition de modèles experts, la classification du territoire suisse en domaines environnementaux, la conception d'un échantillonnage environnementalement stratifié des unités de végétation cibles dans toute la Suisse, la création d'une base de données intégrant un système d'aide à la décision pour la classification des relevés, et le « downscaling » des données de couverture du sol de 100 m à 25 m de résolution. Les principales contributions de cette thèse à la discipline de la modélisation de la distribution d'espèces (SDM) sont rassemblées dans quatre articles scientifiques. Dans le premier article, publié dans le Journal of Biogeography, différentes questions liées au processus de modélisation sont étudiées en utilisant les données de l'inventaire forestier de l'Etat de Vaud. Tout d'abord sont évalués les effets de cinq méthodes de sélection pas-à-pas sur la performance, la stabilité et la parcimonie des modèles. Dans le même article sont également évalués: l'effet de la pondération des absences afin d'assurer une prévalence de 0.5 lors de la calibration du modèle; l'effet de limiter les absences au-delà de l'enveloppe définie par les présences; quatre méthodes différentes pour l'intégration de l'autocorrélation spatiale; et enfin, l'effet de l'intégration d'interactions entre facteurs. Les résultats présentés dans cet article ont permis d'améliorer l'outil GRASP qui intègre désonnais de nouvelles méthodes de sélection et la possibilité de traiter les interactions entre variables explicatives, ainsi que l'autocorrélation spatiale. La contribution de différentes sources de données issues de la télédétection a également été évaluée. Le deuxième article (en voie de soumission) explore les effets combinés de la taille de l'échantillon et de la post-stratification sur le la précision des modèles. Les données utilisées ici sont celles concernant la répartition des prairies de Suisse recueillies dans le cadre du projet Landspot et complétées par d'autres sources. Pour la stratification des données, différents cadres spatiaux ont été comparés. En particulier, la stratification environnementale par les domaines environnementaux de Suisse a été comparée à la stratification géographique par les régions biogéographiques ou par les cantons. Le troisième article (en voie de soumission) évalue la contribution de communautés végétales pré-modélisées à la modélisation de la faune. C'est une approche en deux étapes qui combine les disciplines de l'écologie des communautés et de l'écologie spatiale en intégrant leurs concepts de 'habitat' respectifs. Les communautés végétales sont modélisées d'abord, puis ces unités de 'habitat' sont utilisées pour modéliser les espèces animales. Une étude de cas est présentée avec des communautés prairiales et des espèces de papillons. Différentes façons d'intégrer l'information sur la végétation dans les modèles de répartition des papillons sont évaluées. Enfin, un clin d'oeil aux changements climatiques dans le dernier article, publié dans Ecological Modelling. Cet article propose un cadre conceptuel pour l'analyse des changements dans la distribution des espèces qui comprend notamment un catalogue des différentes formes possibles de changement le long d'un gradient d'élévation ou autre gradient environnemental, et une méthode quantitative améliorée pour identifier et décrire ces déplacements. Cette méthodologie a été développée en utilisant des données issues du monitoring des oiseaux nicheurs répandus et l'article présente les résultats concernant les déplacements observés dans la distribution altitudinale des oiseaux nicheurs en Suisse.L'objectif général de cette thèse est d'améliorer les modèles de distribution des espèces en tant que source d'information possible pour les différents outils de conservation (par exemple, listes rouges, réseaux écologiques, évaluation des risques de propagation d'espèces envahissantes, évaluation de la vulnérabilité des espèces dans le contexte de changement climatique). Bien que ces questions de conservation ne soient pas directement testées dans cette thèse, l'importance des améliorations proposées pour la modélisation de la distribution des espèces est discutée à la fin de ce travail dans le contexte de la sélection de réseaux de réserves.
Resumo:
Intensification of farming over the past 50 years has homogenised the landscape structure and contributed to the decline of bird populations in Europe. To better target the conservation of the Barn Owl Tyto alba, we assessed the influence of the landscape structure on breeding performance in western Switzerland. The analyses considered a 23-year data set of breeding parameters collected in an area dominated by intensive agriculture. Using a Geographic Information System approach, landscape characteristics were described around 194 nest sites. Our analyses showed that nest-box occupancy, laying date, clutch and brood size, egg volume and probability of producing a second annual clutch were not significantly associated with any of the eight principal landscape variables (agricultural land, woodland, urban area, hedgerows, cereals, sugar beet, maize and meadow). Nevertheless, the probability that a breeding pair occupied a nest-box decreased the more roads there were surrounding the nest-box. The absence of strong associations between habitat features and breeding parameters suggests that prey availability may be relatively similar between the different breeding sites. In our study area Barn Owls can always find suitable foraging habitats around most nest-boxes.
Resumo:
Cannula design is of prime importance for venous drainage during cardiopulmonary bypass (CPB). To evaluate cannulas intended for CPB, an in vitro circuit was set up with silicone tubing between the test cannula encased in a movable preload reservoir and another static reservoir. The pressure-drop (DeltaP) value (P-drainage - P-preload) was measured using Millar pressure transducers. Flow rate (Q) was measured using an ultrasound flowmeter. Data display and data recording were controlled using a LabView application, custom made particularly for our experiments. Our results demonstrated that DeltaP, Q, and cannula resistance (DeltaP/Q) values were significantly decreased when the cannula diameter was increased for Smart and Medtronic cannulas. Smartcanula showed 36% and 43% less resistance compared to Medtronic venous and Medtronic femoral cannulas, respectively. The cannula shape (straight- or curved-tips) did not affect the DLP cannula resistance. Out of five cannulas tested, the Smartcanula outperforms the other commercially available cannulas. The mean (DeltaP/Q) values were 3.3 +/- 0.08, 4.07 +/- 0.08, 5.58 +/- 0.10, 5.74 +/- 0.15, and 6.45 +/- 0.15 for Smart, Medtronic, Edwards, Sarns, and Gambro cannulas, respectively (two-way ANOVA, p < 0.0001). In conclusion, the present assay allows discrimination between different forms of cannula with high or low lumen resistance.
Resumo:
The European Surveillance of Congenital Anomalies (EUROCAT) network of population-based congenital anomaly registries is an important source of epidemiologic information on congenital anomalies in Europe covering live births, fetal deaths from 20 weeks gestation, and terminations of pregnancy for fetal anomaly. EUROCAT's policy is to strive for high-quality data, while ensuring consistency and transparency across all member registries. A set of 30 data quality indicators (DQIs) was developed to assess five key elements of data quality: completeness of case ascertainment, accuracy of diagnosis, completeness of information on EUROCAT variables, timeliness of data transmission, and availability of population denominator information. This article describes each of the individual DQIs and presents the output for each registry as well as the EUROCAT (unweighted) average, for 29 full member registries for 2004-2008. This information is also available on the EUROCAT website for previous years. The EUROCAT DQIs allow registries to evaluate their performance in relation to other registries and allows appropriate interpretations to be made of the data collected. The DQIs provide direction for improving data collection and ascertainment, and they allow annual assessment for monitoring continuous improvement. The DQI are constantly reviewed and refined to best document registry procedures and processes regarding data collection, to ensure appropriateness of DQI, and to ensure transparency so that the data collected can make a substantial and useful contribution to epidemiologic research on congenital anomalies.