29 resultados para DTI DWI ADC FA rene policistico RM diffusione
em Université de Lausanne, Switzerland
Resumo:
The objective of this study was to investigate whether it is possible to pool together diffusion spectrum imaging data from four different scanners, located at three different sites. Two of the scanners had identical configuration whereas two did not. To measure the variability, we extracted three scalar maps (ADC, FA and GFA) from the DSI and utilized a region and a tract-based analysis. Additionally, a phantom study was performed to rule out some potential factors arising from the scanner performance in case some systematic bias occurred in the subject study. This work was split into three experiments: intra-scanner reproducibility, reproducibility with twin-scanner settings and reproducibility with other configurations. Overall for the intra-scanner and twin-scanner experiments, the region-based analysis coefficient of variation (CV) was in a range of 1%-4.2% and below 3% for almost every bundle for the tract-based analysis. The uncinate fasciculus showed the worst reproducibility, especially for FA and GFA values (CV 3.7-6%). For the GFA and FA maps, an ICC value of 0.7 and above is observed in almost all the regions/tracts. Looking at the last experiment, it was found that there is a very high similarity of the outcomes from the two scanners with identical setting. However, this was not the case for the two other imagers. Given the fact that the overall variation in our study is low for the imagers with identical settings, our findings support the feasibility of cross-site pooling of DSI data from identical scanners.
Resumo:
Objectifs: Etudier l'utilité de DWI dans l'échinococcose alveolaire (EA) hépatique. Matériels et méthodes: Dix-sept patients (10 hommes, âge moyen 64.3) avec 55 lésions hépatiques ont été examinés par IRM. La sémiologie des lésions a été étudiée après classification selon Kodama. Les coefficients apparent de diffusion (ADCmax, ADCmin, ADCtot) ont été mesurés. Résultats: Trois lésions de Kodama de type 1, 13 de type 2, 15 de type 3, 3 de type 4, et 21 de type 5. L'ADCtot des lésions mesurait 1.23±0.18 x 10-3 mm2/s. L'ADCtot de Kodama type 1, 2, 3, 4 et 5 mesuraient 1.97±0.27, 1.66±0.13, 1.73±0.12, 1.15±0.27 et 1.76±0.10 x 10-3 mm2/s, respectivement. Il n'y avait pas de différence significative de l'ADCtot entre les types (p=0.25) hormis le type 4 qui représente une lésion solide (p=0.035). Conclusion: Les valeurs d'ADC des lésions d'EA ne se révèlent pas utiles pour différencier les différents types selon Kodama, hormis pour le type 4 ce qui suggère la présence d'une composante solide. Celles-ci sont relativement basses comparées à d'autres lésions kystiques hépatiques, ce qui peut aider à suggérer le diagnostic.
Resumo:
BACKGROUND AND PURPOSE: MCI was recently subdivided into sd-aMCI, sd-fMCI, and md-aMCI. The current investigation aimed to discriminate between MCI subtypes by using DTI. MATERIALS AND METHODS: Sixty-six prospective participants were included: 18 with sd-aMCI, 13 with sd-fMCI, and 35 with md-aMCI. Statistics included group comparisons using TBSS and individual classification using SVMs. RESULTS: The group-level analysis revealed a decrease in FA in md-aMCI versus sd-aMCI in an extensive bilateral, right-dominant network, and a more pronounced reduction of FA in md-aMCI compared with sd-fMCI in right inferior fronto-occipital fasciculus and inferior longitudinal fasciculus. The comparison between sd-fMCI and sd-aMCI, as well as the analysis of the other diffusion parameters, yielded no significant group differences. The individual-level SVM analysis provided discrimination between the MCI subtypes with accuracies around 97%. The major limitation is the relatively small number of cases of MCI. CONCLUSIONS: Our data show that, at the group level, the md-aMCI subgroup has the most pronounced damage in white matter integrity. Individually, SVM analysis of white matter FA provided highly accurate classification of MCI subtypes.
Resumo:
WE USED A MURINE MODEL OF TRANSIENT FOCAL CEREBRAL ISCHEMIA TO STUDY: 1) in vivo DTI long-term temporal evolution of the apparent diffusion coefficient (ADC) and diffusion fractional anisotropy (FA) at days 4, 10, 15 and 21 after stroke 2) ex vivo distribution of a plasticity-related protein (GAP-43) and its relationship with the ex vivo DTI characteristics of the striato-thalamic pathway (21 days). All animals recovered motor function. In vivo ADC within the infarct was significantly increased after stroke. In the stroke group, GAP-43 expression and FA values were significantly higher in the ipsilateral (IL) striatum and contralateral (CL) hippocampus compared to the shams. DTI tractography showed fiber trajectories connecting the CL striatum to the stroke region, where increased GAP43 and FA were observed and fiber tracts from the CL striatum terminating in the IL hippocampus.Our data demonstrate that DTI changes parallel histological remodeling and recovery of function.
Resumo:
Cerebral microangiopathy (CMA) has been associated with executive dysfunction and fronto-parietal neural network disruption. Advances in magnetic resonance imaging allow more detailed analyses of gray (e.g., voxel-based morphometry-VBM) and white matter (e.g., diffusion tensor imaging-DTI) than traditional visual rating scales. The current study investigated patients with early CMA and healthy control subjects with all three approaches. Neuropsychological assessment focused on executive functions, the cognitive domain most discussed in CMA. The DTI and age-related white matter changes rating scales revealed convergent results showing widespread white matter changes in early CMA. Correlations were found in frontal and parietal areas exclusively with speeded, but not with speed-corrected executive measures. The VBM analyses showed reduced gray matter in frontal areas. All three approaches confirmed the hypothesized fronto-parietal network disruption in early CMA. Innovative methods (DTI) converged with results from conventional methods (visual rating) while allowing greater spatial and tissue accuracy. They are thus valid additions to the analysis of neural correlates of cognitive dysfunction. We found a clear distinction between speeded and nonspeeded executive measures in relationship to imaging parameters. Cognitive slowing is related to disease severity in early CMA and therefore important for early diagnostics.
Resumo:
Elderly individuals display a rapid age-related increase in intraindividual variability (IIV) of their performances. This phenomenon could reflect subtle changes in frontal lobe integrity. However, structural studies in this field are still missing. To address this issue, we computed an IIV index for a simple reaction time (RT) task and performed magnetic resonance imaging (MRI) including voxel based morphometry (VBM) and the tract based spatial statistics (TBSS) analysis of diffusion tensor imaging (DTI) in 61 adults aged from 22 to 88 years. The age-related IIV increase was associated with decreased fractional anisotropy (FA) as well as increased radial (RD) and mean (MD) diffusion in the main white matter (WM) fiber tracts. In contrast, axial diffusion (AD) and grey matter (GM) densities did not show any significant correlation with IIV. In multivariate models, only FA has an age-independent effect on IIV. These results revealed that WM but not GM changes partly mediated the age-related increase of IIV. They also revealed that the association between WM and IIV could not be only attributed to the damage of frontal lobe circuits but concerned the majority of interhemispheric and intrahemispheric corticocortical connections.
Resumo:
Messages à retenir: Connaître le principe physique de l'imagerie de diffusion (DWI) à l'IRM adaptée à l'exploration des tumeurs du foie.Savoir la bonne technique d'acquisition des séquences pour évaluer la diffusion du parenchyme hépatique ainsi que des lésions focales intra -hépatiques les plusfréquentes.Apprendre l'utilité de la DWI pour évaluer le succès d'un traitement médical oncologique ou interventionnel .Discuter les avantages et les pièges liés à la DWI hépatique susceptibles d'influencer l'interprétation des tumeurs hépatiques. Résumé: Le principe d'imagerie de diffusion (DWI) à l'IRM repose sur la mobilité des molécules d'eau dans les différents tissus. Ce «mouvement Brownien» dépend de lacellularité tissulaire , des membranes cellulaires intactes et de la vascularisation . L'augmentation de ces paramètres précités résulte en une restriction de ladiffusion moléculaire, caractérisée par un hypersignal, puis quantifié par le calcul d'un coefficient apparent de diffusion (ADC). Basée sur des séquenceséchoplanaires pondérées en T2, la technique d'acquisition est rapide et non-invasive, donc souvent intégrée à l'IRM hépatique de routine. La DWI s'est révéléetrès sensible pour la détection de tumeurs hépatiques, même à un diamètre infracentimétrique. Néanmoins, sans être très spécifique, elle ne donne pas d'information certaine sur le caractère bénin ou malin, et elle doit être interprétée avec les autres séquences d'IRM et dans le contexte clinique donné. L'informationdiagnostique résultant de la DWI est morphologique et fonctionnelle, ce qui permet d'évaluer le succès de traitements oncologiques, notamment en absence dechangement de taille ou persistance de prise de contraste des lésions hépatiques. Très sensibles aux mouvements respiratoires, la DWI hépatique peut êtreaccompagnée d'artéfacts, qui influencent le calcul de l'ADC dont la valeur dépend de la machine IRM utilisée.
Resumo:
Introduction : DTI has proven to be an exquisite biomarker of tissue microstructure integrity. This technique has been successfully applied to schizophrenia in showing that fractional anisotropy (FA, a marker of white matter integrity) is diminished in several areas of the brain (Kyriakopoulos M et al (2008)). New ways of representing diffusion data emerged recently and achieved to create structural connectivity maps in healthy brains (Hagmann P et al. (2008)). These maps have the capacity to study alterations over the entire brain at the connection and network level. This is of high interest in complex disconnection diseases like schizophrenia. We report on the specific network alterations of schizophrenic patients. Methods : 13 patients with chronic schizophrenia were recruited from in-patient, day treatment, out-patient clinics. Comparison subjects were recruited and group-matched to patients on age, sex, handedness, and parental social economic-status. This study was approved by the local IRB and subjects had to give informed written consent. They were scanned with a 3T clinical MRI scanner. DTI and high-resolution anatomical T1w imaging were performed during the same session. The path from diffusion MRI to a multi-resolution structural connection matrices of the entire brain is a five steps process that was performed in a similar way as described in Hagmann P et al. (2008). (1) DTI and T1w MRI of the brain, (2) segmentation of white and gray matter, (3) white matter tractography, (4) segmentation of the cortex into 242 ROIs of equal surface area covering the entire cortex (Fig 1), (5) the connection network was constructed by measuring for each ROI to ROI connection the related average FA along the corresponding tract. Results : For every connection between 2 ROIs of the network we tested the hypothesis H0: "average FA along fiber pathway is larger or equal in patients than in controls". H0 was rejected for connections where average FA in a connection was significantly lower in patients than in controls. Threshold p-value was 0.01 corrected for multiple comparisons with false discovery rate. We identified consistently that temporal, occipito-temporal, precuneo-temporal as well as frontal inferior and precuneo-cingulate connections were altered (Fig 2: significant connections in yellow). This is in agreement with the known literature, which showed across several studies that FA is diminished in several areas of the brain. More precisely, abnormalities were reported in the prefrontal and temporal white matter and to some extent also in the parietal and occipital regions. The alterations reported in the literature specifically included the corpus callosum, the arcuate fasciculus and the cingulum bundle, which was the case here as well. In addition small world indexes are significantly reduced in patients (p<0.01) (Fig. 3). Conclusions : Using connectome mapping to characterize differences in structural connectivity between healthy and diseased subjects we were able to show widespread connectional alterations in schizophrenia patients and systematic small worldness decrease, which is a marker of network desorganization. More generally, we described a method that has the capacity to sensitively identify structure alterations in complex disconnection syndromes where lesions are widespread throughout the connectional network.
Resumo:
Purpose: To report the diffusion-weighted MR imaging (DWI) findings in hepatic alveolar echinococcosis (AE). To evaluate the usefulness of apparent diffusion coefficients (ADCs) for differentiating the 5 types of AE lesions (as reported by Kodama, Radiology, 2003).Methods and Materials: We retrospectively included 17 patients (10 women, mean age 64.3years) with 48 AE liver lesions (>1cm2) that had been investigated by 3-Tesla MR imaging between March 2008 and August 2011 performing our standard protocol including DWI (b-values: 0, 300 and 600s/mm2). In consensus, two radiologists assessed lesion characteristics such as diameter, cystic and/or fibrotic components including Kodama classification, signal intensity, contrast enhancement, calcifications (on CT), and measured the ADC of each lesion. AE was confirmed by serology, biopsy and/or surgery in all patients.Results: Seventeen lesions of Kodama type 1, 10 of type 2, 19 of type 3, 1 of type 4 and 1 of type 5 were found. Mean(±SD) ADC of all AE lesions was 1.75±0.45 ×10-3mm2/s. Mean(±SD) ADCs of Kodama type 1, 2, 3, 4 and 5 lesions were 1.74±0.55, 1.71±0.49, 1.82±0.36, 1.46±0 and 1.43±0 ×10-3mm2/s, respectively. No significant difference was noted between the different Kodama types (p=0.89). Presence of fibrotic (p=0.24) and/or calcified (p=0.90) components, or contrast enhancement (p=0.84) of AE lesions were not correlated with significant differences in ADCs.Conclusion: ADCs of AE lesions are relatively low compared to other cystic liver lesions, which is helpful in suggesting the diagnosis. However, ADCs were not found to be useful for differentiating Kodama types of AE lesions.
Resumo:
BACKGROUND: Diffusion-weighted magnetic resonance imaging (MRI) is increasingly being used for assessing the treatment succes in oncology, but the real clinical value needs to evaluated by comparison with other, already established, metabolic imaging techniques. PURPOSE: To prospectively evaluate the clinical potential of diffusion-weighted MRI with apparent diffusion coefficient (ADC) mapping for gastrointestinal stromal tumor (GIST) response to targeted therapy compared with 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT). MATERIAL AND METHODS: Eight patients (mean age, 56 ± 11 years) known to have metastatic GIST underwent 18F-FDG PET/CT and MRI (T1Gd, DWI [b = 50,300,600], ADC mapping) simultaneously, before and after change in targeted therapy. MR and PET/CT examinations were first analyzed blindly. Second, PET/CT images were co-registered with T1Gd-MR images for lesion detection. Only 18F-FDG avid lesions were considered. Maximum standardized uptake value (SUVmax) and the corresponding minimum ADCmin were measured for the six largest lesions per patient, if any, on baseline and follow-up examinations. The relationship between changes in SUVmax and ADCmin was analyzed (Spearman's correlation). RESULTS: Twenty-four metastases (12 hepatic, 12 extra-hepatic) were compared on PET/CT and MR images. SUVmax decreased from 7.7 ± 8.1 g/mL to 5.5 ± 5.4 g/mL (P = 0.20), while ADCmin increased from 1.2 ± 0.3 × 10(-3)mm(2)/s to 1.5 ± 0.3 × 10(-3)mm(2)/s (P = 0.0002). There was a significant association between changes in SUVmax and ADCmin (rho = - 0.62, P = 0.0014), but not between changes in lesions size (P = 0.40). CONCLUSION: Changes in ADCmin correlated with the response of 18F-FDG avid GIST to targeted therapy. Thus, diffusion-weighted MRI may represent a radiation-free alternative for follow-up treatment for metastatic GIST patients.
Resumo:
PURPOSE: To compare the apparent diffusion coefficient (ADC) values of malignant liver lesions on diffusion-weighted MRI (DWI) before and after successful radiofrequency ablation (RF ablation). MATERIALS AND METHODS: Thirty-two patients with 43 malignant liver lesions (23/20: metastases/hepatocellular carcinomas (HCC)) underwent liver MRI (3.0T) before (<1month) and after RF ablation (at 1, 3 and 6months) using T2-, gadolinium-enhanced T1- and DWI-weighted MR sequences. Jointly, two radiologists prospectively measured ADCs for each lesion by means of two different regions of interest (ROIs), first including the whole lesion and secondly the area with the visibly most restricted diffusion (MRDA) on ADC map. Changes of ADCs were evaluated with ANOVA and Dunnett tests. RESULTS: Thirty-one patients were successfully treated, while one patient was excluded due to focal recurrence. In metastases (n=22), the ADC in the whole lesion and in MRDA showed an up-and-down evolution. In HCC (n=20), the evolution of ADC was more complex, but with significantly higher values (p=0.013) at 1 and 6months after RF ablation. CONCLUSION: The ADC values of malignant liver lesions successfully treated by RF ablation show a predictable evolution and may help radiologists to monitor tumor response after treatment.
Resumo:
Exploring the anatomical and functional connectivities between different regions of the brain (the "Connectome") is a core challenge in neuroscience. While robust methods are available for the adult brain, mapping the connectome in neonates is highly challenging. The purpose of this pilot study is to present a methodological approach for analyzing structural connectivity of a neonate brain and to exploit the MP2RAGE sequence with its advantageous contrast properties
Resumo:
Purpose: To evaluate the clinical potential of diffusion-weighted MR imaging with apparent diffusion coefficient (ADC) mapping for the assessment of gastrointestinal stromal tumor (GIST) response to targeted therapy in comparison with 18F-FDG PET/CT. Methods and materials: Five patients (3W/2M, aged 56 ± 13 y) with metastatic GIST underwent both a 18F-FDG PET/CT (Discovery LS, GE Healthcare) and a MRI (VIBE T1 Gd, DWI [b = 50,300,600] and ADC mapping) before and after change in therapy. Exams were first analyzed blindly, then PET/CT images were coregistered to T1 Gd MR images for lesion detection. SUVmax and ADC were measured for the six largest lesions on MRI. The relationship between SUVmax and ADC was analyzed using Spearman's correlation. Results: Altogether, 24 lesions (15 hepatic and 9 non-hepatic) were analyzed on both modalities. Three PET/CT lesions (12.5%) were initially not considered on ADC and 4 lesions on the second PET/CT were excluded because of hepatic vascular activity spillover. SUVmax decreased from 7.2 ± 7.7 g/mL to 5.9 ± 5.9 g/mL (P = 0.53) and ADC increased from 1.2x10-3 mm2/s ± 0.4 to 1.4x10-3 mm2/s ± 0.4 (P = 0.07). There was a significant association between SUVmax decrease and ADC increase (rho= -0.64, P = 0.004). Conclusion: Changes in ADC from diffusion-weighted MRI reflect response of 18F-FDG-avid GIST to therapy. The exact diagnostic value of DWI needs to be investigated further, as well as the effect of lesion size and time under therapy before imaging. Furthermore, the proven association between SUVmax and ADC may be useful for the assessment of treatment response in 18F-FDG non-avid GIST.