4 resultados para DNA DOUBLE HELIX
em Université de Lausanne, Switzerland
Resumo:
Human MRE11 is a key enzyme in DNA double-strand break repair and genome stability. Human MRE11 bears a glycine-arginine-rich (GAR) motif that is conserved among multicellular eukaryotic species. We investigated how this motif influences MRE11 function. Human MRE11 alone or a complex of MRE11, RAD50, and NBS1 (MRN) was methylated in insect cells, suggesting that this modification is conserved during evolution. We demonstrate that PRMT1 interacts with MRE11 but not with the MRN complex, suggesting that MRE11 arginine methylation occurs prior to the binding of NBS1 and RAD50. Moreover, the first six methylated arginines are essential for the regulation of MRE11 DNA binding and nuclease activity. The inhibition of arginine methylation leads to a reduction in MRE11 and RAD51 focus formation on a unique double-strand break in vivo. Furthermore, the MRE11-methylated GAR domain is sufficient for its targeting to DNA damage foci and colocalization with gamma-H2AX. These studies highlight an important role for the GAR domain in regulating MRE11 function at the biochemical and cellular levels during DNA double-strand break repair.
Resumo:
Restriction site-associated DNA sequencing (RADseq) provides researchers with the ability to record genetic polymorphism across thousands of loci for nonmodel organisms, potentially revolutionizing the field of molecular ecology. However, as with other genotyping methods, RADseq is prone to a number of sources of error that may have consequential effects for population genetic inferences, and these have received only limited attention in terms of the estimation and reporting of genotyping error rates. Here we use individual sample replicates, under the expectation of identical genotypes, to quantify genotyping error in the absence of a reference genome. We then use sample replicates to (i) optimize de novo assembly parameters within the program Stacks, by minimizing error and maximizing the retrieval of informative loci; and (ii) quantify error rates for loci, alleles and single-nucleotide polymorphisms. As an empirical example, we use a double-digest RAD data set of a nonmodel plant species, Berberis alpina, collected from high-altitude mountains in Mexico.
Resumo:
The human Rad52 protein stimulates joint molecule formation by hRad51, a homologue of Escherichia coli RecA protein. Electron microscopic analysis of hRad52 shows that it self-associates to form ring structures with a diameter of approximately 10 nm. Each ring contains a hole at its centre. hRad52 binds to single and double-stranded DNA. In the ssDNA-hRad52 complexes, hRad52 was distributed along the length of the DNA, which exhibited a characteristic "beads on a string" appearance. At higher concentrations of hRad52, "super-rings" (approximately 30 nm) were observed and the ssDNA was collapsed upon itself. In contrast, in dsDNA-hRad52 complexes, some regions of the DNA remained protein-free while others, containing hRad52, interacted to form large protein-DNA networks. Saturating concentrations of hRad51 displaced hRad52 from ssDNA, whereas dsDNA-Rad52 complexes (networks) were more resistant to hRad51 invasion and nucleoprotein filament formation. When Rad52-Rad51-DNA complexes were probed with gold-conjugated hRad52 antibodies, the presence of globular hRad52 structures within the Rad51 nucleoprotein filament was observed. These data provide the first direct visualisation of protein-DNA complexes formed by the human Rad51 and Rad52 recombination/repair proteins.
Resumo:
Despite the development of novel typing methods based on whole genome sequencing, most laboratories still rely on classical molecular methods for outbreak investigation or surveillance. Reference methods for Clostridium difficile include ribotyping and pulsed-field gel electrophoresis, which are band-comparing methods often difficult to establish and which require reference strain collections. Here, we present the double locus sequence typing (DLST) scheme as a tool to analyse C. difficile isolates. Using a collection of clinical C. difficile isolates recovered during a 1-year period, we evaluated the performance of DLST and compared the results to multilocus sequence typing (MLST), a sequence-based method that has been used to study the structure of bacterial populations and highlight major clones. DLST had a higher discriminatory power compared to MLST (Simpson's index of diversity of 0.979 versus 0.965) and successfully identified all isolates of the study (100 % typeability). Previous studies showed that the discriminatory power of ribotyping was comparable to that of MLST; thus, DLST might be more discriminatory than ribotyping. DLST is easy to establish and provides several advantages, including absence of DNA extraction [polymerase chain reaction (PCR) is performed on colonies], no specific instrumentation, low cost and unambiguous definition of types. Moreover, the implementation of a DLST typing scheme on an Internet database, such as that previously done for Staphylococcus aureus and Pseudomonas aeruginosa ( http://www.dlst.org ), will allow users to easily obtain the DLST type by submitting directly sequencing files and will avoid problems associated with multiple databases.