2 resultados para DNA, Ribosomal Spacer

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study was performed to assess the interlaboratory reproducibility of the molecular detection and identification of species of Zygomycetes from formalin-fixed paraffin-embedded kidney and brain tissues obtained from experimentally infected mice. Animals were infected with one of five species (Rhizopus oryzae, Rhizopus microsporus, Lichtheimia corymbifera, Rhizomucor pusillus, and Mucor circinelloides). Samples with 1, 10, or 30 slide cuts of the tissues were prepared from each paraffin block, the sample identities were blinded for analysis, and the samples were mailed to each of seven laboratories for the assessment of sensitivity. A protocol describing the extraction method and the PCR amplification procedure was provided. The internal transcribed spacer 1 (ITS1) region was amplified by PCR with the fungal universal primers ITS1 and ITS2 and sequenced. As negative results were obtained for 93% of the tissue specimens infected by M. circinelloides, the data for this species were excluded from the analysis. Positive PCR results were obtained for 93% (52/56), 89% (50/56), and 27% (15/56) of the samples with 30, 10, and 1 slide cuts, respectively. There were minor differences, depending on the organ tissue, fungal species, and laboratory. Correct species identification was possible for 100% (30 cuts), 98% (10 cuts), and 93% (1 cut) of the cases. With the protocol used in the present study, the interlaboratory reproducibility of ITS sequencing for the identification of major Zygomycetes species from formalin-fixed paraffin-embedded tissues can reach 100%, when enough material is available.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The complex ecology of free-living amoebae (FLA) and their role in spreading pathogenic microorganisms through water systems have recently raised considerable interest. In this study, we investigated the presence of FLA and amoebae-resisting bacteria (ARB) at various stages of a drinking water plant fed with river water. We isolated various amoebal species from the river and from several points within the plant, mostly at early steps of water treatment. Echinamoeba- and Hartmannella-related amoebae were mainly recovered in the drinking water plant whereas Acanthamoeba- and Naegleria-related amoebae were recovered from the river water and the sand filtration units. Some FLA isolates were recovered immediately after the ozonation step, thus suggesting resistance of these microorganisms to this disinfection procedure. A bacterial isolate related to Mycobacterium mucogenicum was recovered from an Echinamoeba-related amoeba isolated from ozone-treated water. Various other ARB were recovered using co-culture with axenic Acanthamoeba castellanii, including mycobacteria, legionella, Chlamydia-like organisms and various proteobacteria. Noteworthy, a new Parachlamydia acanthamoebae strain was recovered from river water and from granular activated carbon (GAC) biofilm. As amoebae mainly multiply in sand and GAC filters, optimization of filter backwash procedures probably offers a possibility to better control these protists and the risk associated with their intracellular hosts