3 resultados para DEMO
em Université de Lausanne, Switzerland
Resumo:
Named entity recognizers are unable to distinguish if a term is a general concept as "scientist" or an individual as "Einstein". In this paper we explore the possibility to reach this goal combining two basic approaches: (i) Super Sense Tagging (SST) and (ii) YAGO. Thanks to these two powerful tools we could automatically create a corpus set in order to train the SuperSense Tagger. The general F1 is over 76% and the model is publicly available.
Resumo:
Habitat restoration measures may result in artificially high breeding density, for instance when nest-boxes saturate the environment, which can negatively impact species' demography. Potential risks include changes in mating and reproductive behaviour such as increased extra-pair paternity, conspecific brood parasitism, and polygyny. Under particular cicumstances, these mechanisms may disrupt reproduction, with populations dragged into an extinction vortex. With the use of nuclear microsatellite markers, we investigated the occurrence of these potentially negative effects in a recovered population of a rare secondary cavity-nesting farmland bird of Central Europe, the hoopoe (Upupa epops). High intensity farming in the study area has resulted in a total eradication of cavity trees, depriving hoopoes from breeding sites. An intensive nest-box campaign rectified this problem, resulting in a spectacular population recovery within a few years only. There was some concern, however, that the new, high artificially-induced breeding density might alter hoopoe mating and reproductive behaviour. As the species underwent a serious demographic bottleneck in the 1970-1990s, we also used the microsatellite markers to reconstitute the demo-genetic history of the population, looking in particular for signs of genetic erosion. We found i) a low occurrence of extra-pair paternity, polygyny and conspecific brood parasitism, ii) a high level of neutral genetic diversity (mean number of alleles and expected heterozygosity per locus: 13.8 and 83%, respectively) and, iii) evidence for genetic connectivity through recent immigration of individuals from well differentiated populations. The recent increase in breeding density did thus not induce so far any noticeable detrimental changes in mating and reproductive behaviour. The demographic bottleneck undergone by the population in the 1970s-1990s was furthermore not accompanied by any significant drop in neutral genetic diversity. Finally, genetic data converged with a concomitant demographic study to evidence that immigration strongly contributed to local population recovery.
Resumo:
The spatial configuration of metapopulations (numbers, sizes, and localization of patches) affects their ability to resist demographic extinction and genetic drift, but sometimes with opposite effects. Small and isolated patches, for instance, contribute marginally to demography but may play a large role in genetics by maintaining a sizeable amount of genetic variance among demes. In source-sink systems, similarly, connectivity may be beneficial in terms of effective size, but detrimental in terms of survival, by lowering the reproductive value of source populations. How to reconcile these opposite effects? Here we propose an analytical framework that integrates fixation time (ability to resist genetic drift) and extinction time (ability to resist demographic extinction) into a single index of resistance, measuring the ability of a metapopulation to maintain its demo-genetic integrity. We then illustrate with numerical examples how conflicting demands may be resolved.