61 resultados para Crossing Over, Genetic
em Université de Lausanne, Switzerland
Resumo:
Rad51 and its meiotic homolog Dmc1 are key proteins of homologous recombination in eukaryotes. These proteins form nucleoprotein complexes on single-stranded DNA that promote a search for homology and that perform DNA strand exchange, the two essential steps of genetic recombination. Previously, we demonstrated that Ca2+ greatly stimulates the DNA strand exchange activity of human (h) Rad51 protein (Bugreev, D. V., and Mazin, A. V. (2004) Proc. Natl. Acad. Sci. U. S. A. 101, 9988-9993). Here, we show that the DNA strand exchange activity of hDmc1 protein is also stimulated by Ca2+. However, the mechanism of stimulation of hDmc1 protein appears to be different from that of hRad51 protein. In the case of hRad51 protein, Ca2+ acts primarily by inhibiting its ATPase activity, thereby preventing self-conversion into an inactive ADP-bound complex. In contrast, we demonstrate that hDmc1 protein does not self-convert into a stable ADP-bound complex. The results indicate that activation of hDmc1 is mediated through conformational changes induced by free Ca2+ ion binding to a protein site that is distinct from the Mg2+.ATP-binding center. These conformational changes are manifested by formation of more stable filamentous hDmc1.single-stranded DNA complexes. Our results demonstrate a universal role of Ca2+ in stimulation of mammalian DNA strand exchange proteins and reveal diversity in the mechanisms of this stimulation.
Resumo:
Arbuscular mycorrhizal fungi (AMF) form symbioses with the majority of plants and form extensive underground hyphal networks simultaneously connecting the roots of different plant species. No empirical evidence exists for either anastomosis between genetically different AMF or genetic exchange.Five isolates of one population of Glomus intraradices were used to study anastomosis between hyphae of germinating spores. We show that genetically distinct AMF, from the same field, anastomose, resulting in viable cytoplasmic connections through which genetic exchange could potentially occur.Pairs of genetically different isolates were then co-cultured in an in vitro system.Freshly produced spores were individually germinated to establish new cultures.Using several molecular tools, we show that genetic exchange occurred between genetically different AMF. Specific genetic markers from each parent were transmitted to the progeny. The progeny were viable, forming symbioses with plant roots. The phenotypes of some of the progeny were significantly different from either parent.Our results indicate that considerable promiscuity could occur in these fungi because nine out of 10 combinations of different isolates anastomosed. The ability to perform genetic crosses between AMF experimentally lays a foundation for understanding the genetics and evolutionary biology of these important plants symbionts.
Resumo:
Predicting progeny performance from parental genetic divergence can potentially enhance the efficiency of supportive breeding programmes and facilitate risk assessment. Yet, experimental testing of the effects of breeding distance on offspring performance remains rare, especially in wild populations of vertebrates. Recent studies have demonstrated that embryos of salmonid fish are sensitive indicators of additive genetic variance for viability traits. We therefore used gametes of wild brown trout (Salmo trutta) from five genetically distinct populations of a river catchment in Switzerland, and used a full factorial design to produce over 2,000 embryos in 100 different crosses with varying genetic distances (FST range 0.005-0.035). Customized egg capsules allowed recording the survival of individual embryos until hatching under natural field conditions. Our breeding design enabled us to evaluate the role of the environment, of genetic and nongenetic parental contributions, and of interactions between these factors, on embryo viability. We found that embryo survival was strongly affected by maternal environmental (i.e. non-genetic) effects and by the microenvironment, i.e. by the location within the gravel. However, embryo survival was not predicted by population divergence, parental allelic dissimilarity, or heterozygosity, neither in the field nor under laboratory conditions. Our findings suggest that the genetic effects of inter-population hybridization within a genetically differentiated meta-population can be minor in comparison to environmental effects.
Resumo:
Arbuscular mycorrhizal fungi (AMF) are highly successful plant symbionts. They reproduce clonally producing multinucleate spores. It has been suggested that some AMF harbor genetically different nuclei. However, recent advances in sequencing the Glomus irregulare genome have indicated very low within-fungus polymorphism. We tested the null hypothesis that, with no genetic differences among nuclei, no significant genetic or phenotypic variation would occur among clonal single spore lines generated from one initial AMF spore. Furthermore, no additional variation would be expected in the following generations of single spore lines. Genetic diversity contained in one initial spore repeatedly gave rise to genetically different variants of the fungus with novel phenotypes. The genetic changes represented quantitative changes in allele frequencies, most probably as a result of changes in the frequency of genetic variation partitioned on different nuclei. The genetic and phenotypic variation is remarkable, given that it arose repeatedly from one clonal individual. Our results highlight the dynamic nature of AMF genetics. Even though within-fungus genetic variation is low, some is probably partitioned among nuclei and potentially causes changes in the phenotype. Our results are important for understanding AMF genetics, as well as for researchers and biotechnologists hoping to use AMF genetic diversity for the improvement of AMF inoculum.
Resumo:
In the early 1900s, the wolf (Canis lupus) was extirpated from France and Switzerland. There is growing evidence that the species is presently recolonizing these countries in the western Alps. By sequencing the mitochondrial DNA (mtDNA) control region of various samples mainly collected in the field (scats, hairs, regurgitates, blood or tissue; n = 292), we could (1) develop a non-invasive method enabling the unambiguous attribution of these samples to wolf, fox (Vulpes vulpes) or dog (Canis familiaris), among others; (2) demonstrate that Italian, French and Swiss wolves share the same mtDNA haplotype, a haplotype that has never been found in any other wolf population world-wide. Combined together, field and genetic data collected over 10 years corroborate the scenario of a natural expansion of wolves from the Italian source population. Furthermore, such a genetic approach is of conservation significance, since it has important consequences for management decisions. This first long-term report using non-invasive sampling demonstrates that long-distance dispersers are common, supporting the hypothesis that individuals may often attempt to colonize far from their native pack, even in the absence of suitable corridors across habitats characterized by intense human activities.
Resumo:
While ecological effects on short-term population dynamics are well understood, their effects over millennia are difficult to demonstrate and convincing evidence is scant. Using coalescent methods, we analysed past population dynamics of three lizard species (Psammodromus hispanicus, P. edwardsianus, P. occidentalis) and linked the results with climate change data covering the same temporal horizon (120 000 years). An increase in population size over time was observed in two species, and in P. occidentalis, no change was observed. Temporal changes in temperature seasonality and the maximum temperature of the warmest month were congruent with changes in population dynamics observed for the three species and both variables affected population density, either directly or indirectly (via a life-history trait). These results constitute the first solid link between ecological change and long-term population dynamics. The results moreover suggest that ecological change leaves genetic signatures that can be retrospectively traced, providing evidence that ecological change is a crucial driver of genetic diversity and speciation.
Resumo:
AIMS/HYPOTHESIS: Several susceptibility genes for type 2 diabetes have been discovered recently. Individually, these genes increase the disease risk only minimally. The goals of the present study were to determine, at the population level, the risk of diabetes in individuals who carry risk alleles within several susceptibility genes for the disease and the added value of this genetic information over the clinical predictors. METHODS: We constructed an additive genetic score using the most replicated single-nucleotide polymorphisms (SNPs) within 15 type 2 diabetes-susceptibility genes, weighting each SNP with its reported effect. We tested this score in the extensively phenotyped population-based cross-sectional CoLaus Study in Lausanne, Switzerland (n = 5,360), involving 356 diabetic individuals. RESULTS: The clinical predictors of prevalent diabetes were age, BMI, family history of diabetes, WHR, and triacylglycerol/HDL-cholesterol ratio. After adjustment for these variables, the risk of diabetes was 2.7 (95% CI 1.8-4.0, p = 0.000006) for individuals with a genetic score within the top quintile, compared with the bottom quintile. Adding the genetic score to the clinical covariates improved the area under the receiver operating characteristic curve slightly (from 0.86 to 0.87), yet significantly (p = 0.002). BMI was similar in these two extreme quintiles. CONCLUSIONS/INTERPRETATION: In this population, a simple weighted 15 SNP-based genetic score provides additional information over clinical predictors of prevalent diabetes. At this stage, however, the clinical benefit of this genetic information is limited.
Resumo:
Although the knowledge on heavy metal hyperaccumulation mechanisms is increasing, the genetic basis of cadmium (Cd) hyperaccurnulation remains to be elucidated. Thlaspi caerulescens is an attractive model since Cd accumulation polymorphism observed in this species suggests genetic differences between populations with low versus high Cd hyperaccumulation capacities. In our study, a methodology is proposed to analyse at a regional scale the genetic differentiation of T. caerulescens natural populations in relation to Cd hyperaccumulation capacity while controlling for different environmental, soil, plant parameters and geographic origins of populations. Twenty-two populations were characterised with AFLP markers and cpDNA polymorphism. Over all loci, a partial Mantel test showed no significant genetic structure with regard to the Cd hyperaccumulation capacity. Nevertheless, when comparing the marker variation to a neutral model, seven AFLP fragments (9% of markers) were identified as presenting particularly high genetic differentiation between populations with low and high Cd hyperaccurnulation capacity. Using simulations, the number of outlier loci was showed to be significantly higher than expected at random. These loci presented a genetic structure linked to Cd hyperaccumulation capacity independently of the geography, environment, soil parameters and Zn, Pb, Fe and Cu concentrations in plants. Using a canonical correspondence analysis, we identified three of them as particularly related to the Cd hyperaccumutation capacity. This study demonstrates that populations with low and high hyperaccurnulation capacities can be significantly distinguished based on molecular data. Further investigations with candidate genes and mapped markers may allow identification and characterization of genomic regions linked to factors involved in Cd hyperaccumulation.
Resumo:
Many endangered species persist as a series of isolated populations, with some populations more genetically diverse than others. If climate change disproportionately threatens the most diverse populations, the species' ability to adapt (and hence its long-term viability) may be affected more severely than would be apparent by its numerical reduction. In the present study, we combine genetic data with modelling of species distributions under climate change to document this situation in an endangered lizard (Eulamprus leuraensis) from montane southeastern Australia. The species is known from only about 40 isolated swamps. Genetic diversity of lizard populations is greater in some sites than others, presumably reflecting consistently high habitat suitability over evolutionary time. Species distribution modelling suggests that the most genetically diverse populations are the ones most at risk from climate change, so that global warming will erode the species' genetic variability faster than it curtails the species' geographic distribution.
Resumo:
PURPOSE: The aim of this study was to determine whether tumor location proximal or distal to the splenic flexure is associated with distinct molecular patterns and can predict clinical outcome in a homogeneous group of patients with Dukes B (T3-T4, N0, M0) colorectal cancer. It has been hypothesized that proximal and distal colorectal cancer may arise through different pathogenetic mechanisms. Although p53 and Ki-ras gene mutations occur frequently in distal tumors, another form of genomic instability associated with defective DNA mismatch repair has been predominantly identified in the proximal colon. To date, however, the clinical usefulness of these molecular characteristics remains unproven. METHODS: A total of 126 patients with a lymph node-negative sporadic colon or rectum adenocarcinoma were prospectively assessed with the endpoint of death by cancer. No patient received either radiotherapy or chemotherapy. p53 protein was studied by immunohistochemistry using DO-7 monoclonal antibody, and p53 and Ki-ras gene mutations were detected by single strand conformation polymorphism assay. RESULTS: During a mean follow-up of 67 months, the overall five-year survival was 70 percent. Nuclear p53 staining was found in 57 tumors (47 percent), and was more frequent in distal than in proximal tumors (55 vs. 21 percent; chi-squared test, P < 0.001). For the whole group, p53 protein expression correlated with poor survival in univariate and multivariate analysis (log-rank test, P = 0.01; hazard ratio = 2.16; 95 percent confidence interval = 1.12-4.11, P = 0.02). Distal colon tumors and rectal tumors exhibited similar molecular patterns and showed no difference in clinical outcome. In comparison with distal colorectal cancer, proximal tumors were found to be statistically significantly different on the following factors: mucinous content (P = 0.008), degree of histologic differentiation (P = 0.012), p53 protein expression, and gene mutation (P = 0.001 and 0.01 respectively). Finally, patients with proximal tumors had a marginally better survival than those with distal colon or rectal cancers (log-rank test, P = 0.045). CONCLUSION: In this series of Dukes B colorectal cancers, p53 protein expression was an independent factor for survival, which also correlated with tumor location. Eighty-six percent of p53-positive tumors were located in the distal colon and rectum. Distal colon and rectum tumors had similar molecular and clinical characteristics. In contrast, proximal neoplasms seem to represent a distinct entity, with specific histopathologic characteristics, molecular patterns, and clinical outcome. Location of the neoplasm in reference to the splenic flexure should be considered before group stratification in future trials of adjuvant chemotherapy in patients with Dukes B tumors.
Resumo:
Bietti crystalline corneoretinal dystrophy (BCD) is an autosomal recessive retinal degeneration characterized by multiple glistening intraretinal dots scattered over the fundus, degeneration of the retina, and sclerosis of the choroidal vessels, ultimately resulting in progressive night blindness and constriction of the visual field. Although BCD has been associated with abnormalities in fatty-acid metabolism and absence of fatty-acid binding by two cytosolic proteins, the genetic basis of BCD is unknown. We report linkage of the BCD locus to D4S426 (maximum LOD score [Z(max)] 4.81; recombination fraction [straight theta] 0), D4S2688 (Zmax=3.97; straight theta=0), and D4S2299 (Zmax=5.31; straight theta=0), on chromosome 4q35-4qtel. Multipoint analysis confirmed linkage to the region telomeric of D4S1652 with a Z(max) of 5.3 located 4 cM telomeric of marker D4S2930.
Resumo:
Blood pressure is a heritable trait influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (≥140 mm Hg systolic blood pressure or ≥90 mm Hg diastolic blood pressure). Even small increments in blood pressure are associated with an increased risk of cardiovascular events. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention.
Resumo:
Evidence has emerged that the initiation and growth of gliomas is sustained by a subpopulation of cancer-initiating cells (CICs). Because of the difficulty of using markers to tag CICs in gliomas, we have previously exploited more robust phenotypic characteristics, including a specific morphology and intrincic autofluorescence, to identify and isolate a subpopulation of glioma CICs, called FL1(+). The objective of this study was to further validate our method in a large cohort of human glioma and a mouse model of glioma. Seventy-four human gliomas of all grades and the GFAP-V(12)HA-ras B8 mouse model were analyzed for in vitro self-renewal capacity and their content of FL1(+). Nonneoplastic brain tissue and embryonic mouse brain were used as control. Genetic traceability along passages was assessed with microsatellite analysis. We found that FL1(+) cells from low-grade gliomas and from control nonneoplasic brain tissue show a lower level of autofluorescence and undergo a restricted number of cell divisions before dying in culture. In contrast, we found that FL1(+) cells derived from many but not all high-grade gliomas acquire high levels of autofluorescence and can be propagated in long-term cultures. Moreover, FL1(+) cells show a remarkable traceability over time in vitro and in vivo. Our results show that FL1(+) cells can be found in all specimens of a large cohort of human gliomas of different grades and in a model of genetically induced mouse glioma as well as nonneoplastic brain. However, their self-renewal capacity is variable and seems to be dependent on the tumor grade.
Resumo:
It has recently been proposed that the SSAT gene plays a role in the predisposition to suicidal behavior. SSAT expression was found to be down-regulated in the brain of suicide completers. In addition, a single nucleotide polymorphism (SNP) rs6526342 was associated both with variation in SSAT expression and with suicidal behavior. In this study, we aimed to characterize the relationship between SSAT dysregulation and suicide behavior. To this end, we measured SSAT expression levels in the ventral prefrontal cortex (VPFC) of suicide completers (n = 20) and controls (n = 20) and found them to be significantly down-regulated in suicide victims (P = 0.007). To identify the basis of the regulation of SSAT expression, we performed an association analysis of 309 SNPs with SSAT transcript levels in 53 lymphoblastoid cell lines from the CEPH collection. We then examined the methylation status of the SSAT promoter region in males and females suicide completers and control subjects whose SSAT brain expression had been measured. We found no evidence to support a role for SNPs in controlling the level of SSAT expression. SSAT promoter methylation levels were not different between suicide completers and controls and did not correlate with SSAT expression levels. In addition, we found no indication of a genetic association between suicidal behavior and SNPs located within the SSAT gene. Our study provides new results which show that dysregulation of SSAT expression does play a role in suicide behavior. However, our data do not support any association between rs6526342 and variation in SSAT expression or suicidal behavior.