51 resultados para Cooperative games (Mathematics)
em Université de Lausanne, Switzerland
Resumo:
Abstract The object of game theory lies in the analysis of situations where different social actors have conflicting requirements and where their individual decisions will all influence the global outcome. In this framework, several games have been invented to capture the essence of various dilemmas encountered in many common important socio-economic situations. Even though these games often succeed in helping us understand human or animal behavior in interactive settings, some experiments have shown that people tend to cooperate with each other in situations for which classical game theory strongly recommends them to do the exact opposite. Several mechanisms have been invoked to try to explain the emergence of this unexpected cooperative attitude. Among them, repeated interaction, reputation, and belonging to a recognizable group have often been mentioned. However, the work of Nowak and May (1992) showed that the simple fact of arranging the players according to a spatial structure and only allowing them to interact with their immediate neighbors is sufficient to sustain a certain amount of cooperation even when the game is played anonymously and without repetition. Nowak and May's study and much of the following work was based on regular structures such as two-dimensional grids. Axelrod et al. (2002) showed that by randomizing the choice of neighbors, i.e. by actually giving up a strictly local geographical structure, cooperation can still emerge, provided that the interaction patterns remain stable in time. This is a first step towards a social network structure. However, following pioneering work by sociologists in the sixties such as that of Milgram (1967), in the last few years it has become apparent that many social and biological interaction networks, and even some technological networks, have particular, and partly unexpected, properties that set them apart from regular or random graphs. Among other things, they usually display broad degree distributions, and show small-world topological structure. Roughly speaking, a small-world graph is a network where any individual is relatively close, in terms of social ties, to any other individual, a property also found in random graphs but not in regular lattices. However, in contrast with random graphs, small-world networks also have a certain amount of local structure, as measured, for instance, by a quantity called the clustering coefficient. In the same vein, many real conflicting situations in economy and sociology are not well described neither by a fixed geographical position of the individuals in a regular lattice, nor by a random graph. Furthermore, it is a known fact that network structure can highly influence dynamical phenomena such as the way diseases spread across a population and ideas or information get transmitted. Therefore, in the last decade, research attention has naturally shifted from random and regular graphs towards better models of social interaction structures. The primary goal of this work is to discover whether or not the underlying graph structure of real social networks could give explanations as to why one finds higher levels of cooperation in populations of human beings or animals than what is prescribed by classical game theory. To meet this objective, I start by thoroughly studying a real scientific coauthorship network and showing how it differs from biological or technological networks using divers statistical measurements. Furthermore, I extract and describe its community structure taking into account the intensity of a collaboration. Finally, I investigate the temporal evolution of the network, from its inception to its state at the time of the study in 2006, suggesting also an effective view of it as opposed to a historical one. Thereafter, I combine evolutionary game theory with several network models along with the studied coauthorship network in order to highlight which specific network properties foster cooperation and shed some light on the various mechanisms responsible for the maintenance of this same cooperation. I point out the fact that, to resist defection, cooperators take advantage, whenever possible, of the degree-heterogeneity of social networks and their underlying community structure. Finally, I show that cooperation level and stability depend not only on the game played, but also on the evolutionary dynamic rules used and the individual payoff calculations. Synopsis Le but de la théorie des jeux réside dans l'analyse de situations dans lesquelles différents acteurs sociaux, avec des objectifs souvent conflictuels, doivent individuellement prendre des décisions qui influenceront toutes le résultat global. Dans ce cadre, plusieurs jeux ont été inventés afin de saisir l'essence de divers dilemmes rencontrés dans d'importantes situations socio-économiques. Bien que ces jeux nous permettent souvent de comprendre le comportement d'êtres humains ou d'animaux en interactions, des expériences ont montré que les individus ont parfois tendance à coopérer dans des situations pour lesquelles la théorie classique des jeux prescrit de faire le contraire. Plusieurs mécanismes ont été invoqués pour tenter d'expliquer l'émergence de ce comportement coopératif inattendu. Parmi ceux-ci, la répétition des interactions, la réputation ou encore l'appartenance à des groupes reconnaissables ont souvent été mentionnés. Toutefois, les travaux de Nowak et May (1992) ont montré que le simple fait de disposer les joueurs selon une structure spatiale en leur permettant d'interagir uniquement avec leurs voisins directs est suffisant pour maintenir un certain niveau de coopération même si le jeu est joué de manière anonyme et sans répétitions. L'étude de Nowak et May, ainsi qu'un nombre substantiel de travaux qui ont suivi, étaient basés sur des structures régulières telles que des grilles à deux dimensions. Axelrod et al. (2002) ont montré qu'en randomisant le choix des voisins, i.e. en abandonnant une localisation géographique stricte, la coopération peut malgré tout émerger, pour autant que les schémas d'interactions restent stables au cours du temps. Ceci est un premier pas en direction d'une structure de réseau social. Toutefois, suite aux travaux précurseurs de sociologues des années soixante, tels que ceux de Milgram (1967), il est devenu clair ces dernières années qu'une grande partie des réseaux d'interactions sociaux et biologiques, et même quelques réseaux technologiques, possèdent des propriétés particulières, et partiellement inattendues, qui les distinguent de graphes réguliers ou aléatoires. Entre autres, ils affichent en général une distribution du degré relativement large ainsi qu'une structure de "petit-monde". Grossièrement parlant, un graphe "petit-monde" est un réseau où tout individu se trouve relativement près de tout autre individu en termes de distance sociale, une propriété également présente dans les graphes aléatoires mais absente des grilles régulières. Par contre, les réseaux "petit-monde" ont, contrairement aux graphes aléatoires, une certaine structure de localité, mesurée par exemple par une quantité appelée le "coefficient de clustering". Dans le même esprit, plusieurs situations réelles de conflit en économie et sociologie ne sont pas bien décrites ni par des positions géographiquement fixes des individus en grilles régulières, ni par des graphes aléatoires. De plus, il est bien connu que la structure même d'un réseau peut passablement influencer des phénomènes dynamiques tels que la manière qu'a une maladie de se répandre à travers une population, ou encore la façon dont des idées ou une information s'y propagent. Ainsi, durant cette dernière décennie, l'attention de la recherche s'est tout naturellement déplacée des graphes aléatoires et réguliers vers de meilleurs modèles de structure d'interactions sociales. L'objectif principal de ce travail est de découvrir si la structure sous-jacente de graphe de vrais réseaux sociaux peut fournir des explications quant aux raisons pour lesquelles on trouve, chez certains groupes d'êtres humains ou d'animaux, des niveaux de coopération supérieurs à ce qui est prescrit par la théorie classique des jeux. Dans l'optique d'atteindre ce but, je commence par étudier un véritable réseau de collaborations scientifiques et, en utilisant diverses mesures statistiques, je mets en évidence la manière dont il diffère de réseaux biologiques ou technologiques. De plus, j'extrais et je décris sa structure de communautés en tenant compte de l'intensité d'une collaboration. Finalement, j'examine l'évolution temporelle du réseau depuis son origine jusqu'à son état en 2006, date à laquelle l'étude a été effectuée, en suggérant également une vue effective du réseau par opposition à une vue historique. Par la suite, je combine la théorie évolutionnaire des jeux avec des réseaux comprenant plusieurs modèles et le réseau de collaboration susmentionné, afin de déterminer les propriétés structurelles utiles à la promotion de la coopération et les mécanismes responsables du maintien de celle-ci. Je mets en évidence le fait que, pour ne pas succomber à la défection, les coopérateurs exploitent dans la mesure du possible l'hétérogénéité des réseaux sociaux en termes de degré ainsi que la structure de communautés sous-jacente de ces mêmes réseaux. Finalement, je montre que le niveau de coopération et sa stabilité dépendent non seulement du jeu joué, mais aussi des règles de la dynamique évolutionnaire utilisées et du calcul du bénéfice d'un individu.
Resumo:
Games are powerful and engaging. On average, one billion people spend at least 1 hour a day playing computer and videogames. This is even more true with the younger generations. Our students have become the < digital natives >, the < gamers >, the < virtual generation >. Research shows that those who are most at risk for failure in the traditional classroom setting, also spend more time than their counterparts, using video games. They might strive, given a different learning environment. Educators have the responsibility to align their teaching style to these younger generation learning styles. However, many academics resist the use of computer-assisted learning that has been "created elsewhere". This can be extrapolated to game-based teaching: even if educational games were more widely authored, their adoption would still be limited to the educators who feel a match between the authored games and their own beliefs and practices. Consequently, game-based teaching would be much more widespread if teachers could develop their own games, or at least customize them. Yet, the development and customization of teaching games are complex and costly. This research uses a design science methodology, leveraging gamification techniques, active and cooperative learning theories, as well as immersive sandbox 3D virtual worlds, to develop a method which allows management instructors to transform any off-the-shelf case study into an engaging collaborative gamified experience. This method is applied to marketing case studies, and uses the sandbox virtual world of Second Life. -- Les jeux sont puissants et motivants, En moyenne, un milliard de personnes passent au moins 1 heure par jour jouer à des jeux vidéo sur ordinateur. Ceci se vérifie encore plus avec les jeunes générations, Nos étudiants sont nés à l'ère du numérique, certains les appellent des < gamers >, d'autres la < génération virtuelle >. Les études montrent que les élèves qui se trouvent en échec scolaire dans les salles de classes traditionnelles, passent aussi plus de temps que leurs homologues à jouer à des jeux vidéo. lls pourraient potentiellement briller, si on leur proposait un autre environnement d'apprentissage. Les enseignants ont la responsabilité d'adapter leur style d'enseignement aux styles d'apprentissage de ces jeunes générations. Toutefois, de nombreux professeurs résistent lorsqu'il s'agit d'utiliser des contenus d'apprentissage assisté par ordinateur, développés par d'autres. Ceci peut être extrapolé à l'enseignement par les jeux : même si un plus grand nombre de jeux éducatifs était créé, leur adoption se limiterait tout de même aux éducateurs qui perçoivent une bonne adéquation entre ces jeux et leurs propres convictions et pratiques. Par conséquent, I'enseignement par les jeux serait bien plus répandu si les enseignants pouvaient développer leurs propres jeux, ou au moins les customiser. Mais le développement de jeux pédagogiques est complexe et coûteux. Cette recherche utilise une méthodologie Design Science pour développer, en s'appuyant sur des techniques de ludification, sur les théories de pédagogie active et d'apprentissage coopératif, ainsi que sur les mondes virtuels immersifs < bac à sable > en 3D, une méthode qui permet aux enseignants et formateurs de management, de transformer n'importe quelle étude de cas, provenant par exemple d'une centrale de cas, en une expérience ludique, collaborative et motivante. Cette méthode est appliquée aux études de cas Marketing dans le monde virtuel de Second Life.
Resumo:
The results of numerous economic games suggest that humans behave more cooperatively than would be expected if they were maximizing selfish interests. It has been argued that this is because individuals gain satisfaction from the success of others, and that such prosocial preferences require a novel evolutionary explanation. However, in previous games, imperfect behavior would automatically lead to an increase in cooperation, making it impossible to decouple any form of mistake or error from prosocial cooperative decisions. Here we empirically test between these alternatives by decoupling imperfect behavior from prosocial preferences in modified versions of the public goods game, in which individuals would maximize their selfish gain by completely (100%) cooperating. We found that, although this led to higher levels of cooperation, it did not lead to full cooperation, and individuals still perceived their group mates as competitors. This is inconsistent with either selfish or prosocial preferences, suggesting that the most parsimonious explanation is imperfect behavior triggered by psychological drives that can prevent both complete defection and complete cooperation. More generally, our results illustrate the caution that must be exercised when interpreting the evolutionary implications of economic experiments, especially the absolute level of cooperation in a particular treatment.
Resumo:
Cooperation and coordination are desirable behaviors that are fundamental for the harmonious development of society. People need to rely on cooperation with other individuals in many aspects of everyday life, such as teamwork and economic exchange in anonymous markets. However, cooperation may easily fall prey to exploitation by selfish individuals who only care about short- term gain. For cooperation to evolve, specific conditions and mechanisms are required, such as kinship, direct and indirect reciprocity through repeated interactions, or external interventions such as punishment. In this dissertation we investigate the effect of the network structure of the population on the evolution of cooperation and coordination. We consider several kinds of static and dynamical network topologies, such as Baraba´si-Albert, social network models and spatial networks. We perform numerical simulations and laboratory experiments using the Prisoner's Dilemma and co- ordination games in order to contrast human behavior with theoretical results. We show by numerical simulations that even a moderate amount of random noise on the Baraba´si-Albert scale-free network links causes a significant loss of cooperation, to the point that cooperation almost vanishes altogether in the Prisoner's Dilemma when the noise rate is high enough. Moreover, when we consider fixed social-like networks we find that current models of social networks may allow cooperation to emerge and to be robust at least as much as in scale-free networks. In the framework of spatial networks, we investigate whether cooperation can evolve and be stable when agents move randomly or performing Le´vy flights in a continuous space. We also consider discrete space adopting purposeful mobility and binary birth-death process to dis- cover emergent cooperative patterns. The fundamental result is that cooperation may be enhanced when this migration is opportunistic or even when agents follow very simple heuristics. In the experimental laboratory, we investigate the issue of social coordination between indi- viduals located on networks of contacts. In contrast to simulations, we find that human players dynamics do not converge to the efficient outcome more often in a social-like network than in a random network. In another experiment, we study the behavior of people who play a pure co- ordination game in a spatial environment in which they can move around and when changing convention is costly. We find that each convention forms homogeneous clusters and is adopted by approximately half of the individuals. When we provide them with global information, i.e., the number of subjects currently adopting one of the conventions, global consensus is reached in most, but not all, cases. Our results allow us to extract the heuristics used by the participants and to build a numerical simulation model that agrees very well with the experiments. Our findings have important implications for policymakers intending to promote specific, desired behaviors in a mobile population. Furthermore, we carry out an experiment with human subjects playing the Prisoner's Dilemma game in a diluted grid where people are able to move around. In contrast to previous results on purposeful rewiring in relational networks, we find no noticeable effect of mobility in space on the level of cooperation. Clusters of cooperators form momentarily but in a few rounds they dissolve as cooperators at the boundaries stop tolerating being cheated upon. Our results highlight the difficulties that mobile agents have to establish a cooperative environment in a spatial setting without a device such as reputation or the possibility of retaliation. i.e. punishment. Finally, we test experimentally the evolution of cooperation in social networks taking into ac- count a setting where we allow people to make or break links at their will. In this work we give particular attention to whether information on an individual's actions is freely available to poten- tial partners or not. Studying the role of information is relevant as information on other people's actions is often not available for free: a recruiting firm may need to call a job candidate's refer- ences, a bank may need to find out about the credit history of a new client, etc. We find that people cooperate almost fully when information on their actions is freely available to their potential part- ners. Cooperation is less likely, however, if people have to pay about half of what they gain from cooperating with a cooperator. Cooperation declines even further if people have to pay a cost that is almost equivalent to the gain from cooperating with a cooperator. Thus, costly information on potential neighbors' actions can undermine the incentive to cooperate in dynamical networks.
Resumo:
Many species are able to learn to associate behaviours with rewards as this gives fitness advantages in changing environments. Social interactions between population members may, however, require more cognitive abilities than simple trial-and-error learning, in particular the capacity to make accurate hypotheses about the material payoff consequences of alternative action combinations. It is unclear in this context whether natural selection necessarily favours individuals to use information about payoffs associated with nontried actions (hypothetical payoffs), as opposed to simple reinforcement of realized payoff. Here, we develop an evolutionary model in which individuals are genetically determined to use either trial-and-error learning or learning based on hypothetical reinforcements, and ask what is the evolutionarily stable learning rule under pairwise symmetric two-action stochastic repeated games played over the individual's lifetime. We analyse through stochastic approximation theory and simulations the learning dynamics on the behavioural timescale, and derive conditions where trial-and-error learning outcompetes hypothetical reinforcement learning on the evolutionary timescale. This occurs in particular under repeated cooperative interactions with the same partner. By contrast, we find that hypothetical reinforcement learners tend to be favoured under random interactions, but stable polymorphisms can also obtain where trial-and-error learners are maintained at a low frequency. We conclude that specific game structures can select for trial-and-error learning even in the absence of costs of cognition, which illustrates that cost-free increased cognition can be counterselected under social interactions.
Resumo:
The present thesis is a contribution to the debate on the applicability of mathematics; it examines the interplay between mathematics and the world, using historical case studies. The first part of the thesis consists of four small case studies. In chapter 1, I criticize "ante rem structuralism", proposed by Stewart Shapiro, by showing that his so-called "finite cardinal structures" are in conflict with mathematical practice. In chapter 2, I discuss Leonhard Euler's solution to the Königsberg bridges problem. I propose interpreting Euler's solution both as an explanation within mathematics and as a scientific explanation. I put the insights from the historical case to work against recent philosophical accounts of the Königsberg case. In chapter 3, I analyze the predator-prey model, proposed by Lotka and Volterra. I extract some interesting philosophical lessons from Volterra's original account of the model, such as: Volterra's remarks on mathematical methodology; the relation between mathematics and idealization in the construction of the model; some relevant details in the derivation of the Third Law, and; notions of intervention that are motivated by one of Volterra's main mathematical tools, phase spaces. In chapter 4, I discuss scientific and mathematical attempts to explain the structure of the bee's honeycomb. In the first part, I discuss a candidate explanation, based on the mathematical Honeycomb Conjecture, presented in Lyon and Colyvan (2008). I argue that this explanation is not scientifically adequate. In the second part, I discuss other mathematical, physical and biological studies that could contribute to an explanation of the bee's honeycomb. The upshot is that most of the relevant mathematics is not yet sufficiently understood, and there is also an ongoing debate as to the biological details of the construction of the bee's honeycomb. The second part of the thesis is a bigger case study from physics: the genesis of GR. Chapter 5 is a short introduction to the history, physics and mathematics that is relevant to the genesis of general relativity (GR). Chapter 6 discusses the historical question as to what Marcel Grossmann contributed to the genesis of GR. I will examine the so-called "Entwurf" paper, an important joint publication by Einstein and Grossmann, containing the first tensorial formulation of GR. By comparing Grossmann's part with the mathematical theories he used, we can gain a better understanding of what is involved in the first steps of assimilating a mathematical theory to a physical question. In chapter 7, I introduce, and discuss, a recent account of the applicability of mathematics to the world, the Inferential Conception (IC), proposed by Bueno and Colyvan (2011). I give a short exposition of the IC, offer some critical remarks on the account, discuss potential philosophical objections, and I propose some extensions of the IC. In chapter 8, I put the Inferential Conception (IC) to work in the historical case study: the genesis of GR. I analyze three historical episodes, using the conceptual apparatus provided by the IC. In episode one, I investigate how the starting point of the application process, the "assumed structure", is chosen. Then I analyze two small application cycles that led to revisions of the initial assumed structure. In episode two, I examine how the application of "new" mathematics - the application of the Absolute Differential Calculus (ADC) to gravitational theory - meshes with the IC. In episode three, I take a closer look at two of Einstein's failed attempts to find a suitable differential operator for the field equations, and apply the conceptual tools provided by the IC so as to better understand why he erroneously rejected both the Ricci tensor and the November tensor in the Zurich Notebook.
Resumo:
In this paper we unify, simplify, and extend previous work on the evolutionary dynamics of symmetric N-player matrix games with two pure strategies. In such games, gains from switching strategies depend, in general, on how many other individuals in the group play a given strategy. As a consequence, the gain function determining the gradient of selection can be a polynomial of degree N-1. In order to deal with the intricacy of the resulting evolutionary dynamics, we make use of the theory of polynomials in Bernstein form. This theory implies a tight link between the sign pattern of the gains from switching on the one hand and the number and stability of the rest points of the replicator dynamics on the other hand. While this relationship is a general one, it is most informative if gains from switching have at most two sign changes, as is the case for most multi-player matrix games considered in the literature. We demonstrate that previous results for public goods games are easily recovered and extended using this observation. Further examples illustrate how focusing on the sign pattern of the gains from switching obviates the need for a more involved analysis.
Resumo:
Brain invasion is a biological hallmark of glioma that contributes to its aggressiveness and limits the potential of surgery and irradiation. Deregulated expression of adhesion molecules on glioma cells is thought to contribute to this process. Junctional adhesion molecules (JAMs) include several IgSF members involved in leukocyte trafficking, angiogenesis, and cell polarity. They are expressed mainly by endothelial cells, white blood cells, and platelets. Here, we report JAM-C expression by human gliomas, but not by their normal cellular counterpart. This expression correlates with the expression of genes involved in cytoskeleton remodeling and cell migration. These genes, identified by a transcriptomic approach, include poliovirus receptor and cystein-rich 61, both known to promote glioma invasion, as well as actin filament associated protein, a c-Src binding partner. Gliomas also aberrantly express JAM-B, a high affinity JAM-C ligand. Their interaction activates the c-Src proto-oncogene, a central upstream molecule in the pathways regulating cell migration and invasion. In the tumor microenvironment, this co-expression may thus promote glioma invasion through paracrine stimuli from both tumor cells and endothelial cells. Accordingly, JAM-C/B blocking antibodies impair in vivo glioma growth and invasion, highlighting the potential of JAM-C and JAM-B as new targets for the treatment of human gliomas.
Resumo:
The last two decades have seen dramatic increases in the size and scope of the Summer Olympic Games. In many ways, London 2012 reached even higher summits than the Beijing Games in 2008. This growth is a major challenge for the Olympics and its future organizers, as it is making the Games increasingly difficult to stage and has greatly reduced the number of cities capable of hosting them. This study shows how various participation and organization indicators have expanded over six Olympiads, from Barcelona 1992 to London 2012, and examines the reasons for this growth. It suggests ways of reducing the size of the Summer Olympic Games in order to make them more manageable and to encourage candidatures from smaller cities and countries.
Resumo:
Gifted children develop asynchronously, often advanced for their age cognitively, but at or between their chronological and mental ages socially and emotionally (Robinson, 2008). In order to help gifted children and adolescents develop and practice social and emotional self-regulation skills, we investigated the use of an Adlerian play therapy approach during pen-and-paper role-playing games. Additionally, we used Goffman's (1961, 1974) social role identification and distance to encourage participants to experiment with new identities. Herein, we propose a psychosocial model of interactions during role-playing games based on Goffman's theory and Adlerian play therapy techniques, and suggest that role-playing games are an effective way of intervening with gifted children and adolescents to improve their intra- and interpersonal skills. We specifically targeted intrapersonal skills of exercising creativity, becoming self-aware, and setting individual goals by raising participants' awareness of their privately logical reasons for making decisions and their levels of social interest. We also targeted their needs and means of seeking significance in the group to promote collaboration and interaction skills with other gifted peers through role analysis, embracement, and distancing. We report results from a case study and conclude that role-playing games deserve more attention, both from researchers and clinical practitioners, because they encourage change while improving young clients' social and emotional development.