43 resultados para Convolutional Neural Networks
em Université de Lausanne, Switzerland
Resumo:
Closely related species may be very difficult to distinguish morphologically, yet sometimes morphology is the only reasonable possibility for taxonomic classification. Here we present learning-vector-quantization artificial neural networks as a powerful tool to classify specimens on the basis of geometric morphometric shape measurements. As an example, we trained a neural network to distinguish between field and root voles from Procrustes transformed landmark coordinates on the dorsal side of the skull, which is so similar in these two species that the human eye cannot make this distinction. Properly trained neural networks misclassified only 3% of specimens. Therefore, we conclude that the capacity of learning vector quantization neural networks to analyse spatial coordinates is a powerful tool among the range of pattern recognition procedures that is available to employ the information content of geometric morphometrics.
Resumo:
A new strategy for incremental building of multilayer feedforward neural networks is proposed in the context of approximation of functions from R-p to R-q using noisy data. A stopping criterion based on the properties of the noise is also proposed. Experimental results for both artificial and real data are performed and two alternatives of the proposed construction strategy are compared.
Resumo:
Abstract In social insects, workers perform a multitude of tasks, such as foraging, nest construction, and brood rearing, without central control of how work is allocated among individuals. It has been suggested that workers choose a task by responding to stimuli gathered from the environment. Response-threshold models assume that individuals in a colony vary in the stimulus intensity (response threshold) at which they begin to perform the corresponding task. Here we highlight the limitations of these models with respect to colony performance in task allocation. First, we show with analysis and quantitative simulations that the deterministic response-threshold model constrains the workers' behavioral flexibility under some stimulus conditions. Next, we show that the probabilistic response-threshold model fails to explain precise colony responses to varying stimuli. Both of these limitations would be detrimental to colony performance when dynamic and precise task allocation is needed. To address these problems, we propose extensions of the response-threshold model by adding variables that weigh stimuli. We test the extended response-threshold model in a foraging scenario and show in simulations that it results in an efficient task allocation. Finally, we show that response-threshold models can be formulated as artificial neural networks, which consequently provide a comprehensive framework for modeling task allocation in social insects.
Resumo:
Rhythmic activity plays a central role in neural computations and brain functions ranging from homeostasis to attention, as well as in neurological and neuropsychiatric disorders. Despite this pervasiveness, little is known about the mechanisms whereby the frequency and power of oscillatory activity are modulated, and how they reflect the inputs received by neurons. Numerous studies have reported input-dependent fluctuations in peak frequency and power (as well as couplings across these features). However, it remains unresolved what mediates these spectral shifts among neural populations. Extending previous findings regarding stochastic nonlinear systems and experimental observations, we provide analytical insights regarding oscillatory responses of neural populations to stimulation from either endogenous or exogenous origins. Using a deceptively simple yet sparse and randomly connected network of neurons, we show how spiking inputs can reliably modulate the peak frequency and power expressed by synchronous neural populations without any changes in circuitry. Our results reveal that a generic, non-nonlinear and input-induced mechanism can robustly mediate these spectral fluctuations, and thus provide a framework in which inputs to the neurons bidirectionally regulate both the frequency and power expressed by synchronous populations. Theoretical and computational analysis of the ensuing spectral fluctuations was found to reflect the underlying dynamics of the input stimuli driving the neurons. Our results provide insights regarding a generic mechanism supporting spectral transitions observed across cortical networks and spanning multiple frequency bands.
Resumo:
This paper presents the general regression neural networks (GRNN) as a nonlinear regression method for the interpolation of monthly wind speeds in complex Alpine orography. GRNN is trained using data coming from Swiss meteorological networks to learn the statistical relationship between topographic features and wind speed. The terrain convexity, slope and exposure are considered by extracting features from the digital elevation model at different spatial scales using specialised convolution filters. A database of gridded monthly wind speeds is then constructed by applying GRNN in prediction mode during the period 1968-2008. This study demonstrates that using topographic features as inputs in GRNN significantly reduces cross-validation errors with respect to low-dimensional models integrating only geographical coordinates and terrain height for the interpolation of wind speed. The spatial predictability of wind speed is found to be lower in summer than in winter due to more complex and weaker wind-topography relationships. The relevance of these relationships is studied using an adaptive version of the GRNN algorithm which allows to select the useful terrain features by eliminating the noisy ones. This research provides a framework for extending the low-dimensional interpolation models to high-dimensional spaces by integrating additional features accounting for the topographic conditions at multiple spatial scales. Copyright (c) 2012 Royal Meteorological Society.
Resumo:
The neuropathology of Alzheimer disease is characterized by senile plaques, neurofibrillary tangles and cell death. These hallmarks develop according to the differential vulnerability of brain networks, senile plaques accumulating preferentially in the associative cortical areas and neurofibrillary tangles in the entorhinal cortex and the hippocampus. We suggest that the main aetiological hypotheses such as the beta-amyloid cascade hypothesis or its variant, the synaptic beta-amyloid hypothesis, will have to consider neural networks not just as targets of degenerative processes but also as contributors of the disease's progression and of its phenotype. Three domains of research are highlighted in this review. First, the cerebral reserve and the redundancy of the network's elements are related to brain vulnerability. Indeed, an enriched environment appears to increase the cerebral reserve as well as the threshold of disease's onset. Second, disease's progression and memory performance cannot be explained by synaptic or neuronal loss only, but also by the presence of compensatory mechanisms, such as synaptic scaling, at the microcircuit level. Third, some phenotypes of Alzheimer disease, such as hallucinations, appear to be related to progressive dysfunction of neural networks as a result, for instance, of a decreased signal to noise ratio, involving a diminished activity of the cholinergic system. Overall, converging results from studies of biological as well as artificial neural networks lead to the conclusion that changes in neural networks contribute strongly to Alzheimer disease's progression.
Resumo:
Genetically engineered bioreporters are an excellent complement to traditional methods of chemical analysis. The application of fluorescence flow cytometry to detection of bioreporter response enables rapid and efficient characterization of bacterial bioreporter population response on a single-cell basis. In the present study, intrapopulation response variability was used to obtain higher analytical sensitivity and precision. We have analyzed flow cytometric data for an arsenic-sensitive bacterial bioreporter using an artificial neural network-based adaptive clustering approach (a single-layer perceptron model). Results for this approach are far superior to other methods that we have applied to this fluorescent bioreporter (e.g., the arsenic detection limit is 0.01 microM, substantially lower than for other detection methods/algorithms). The approach is highly efficient computationally and can be implemented on a real-time basis, thus having potential for future development of high-throughput screening applications.
Resumo:
Real-world objects are often endowed with features that violate Gestalt principles. In our experiment, we examined the neural correlates of binding under conflict conditions in terms of the binding-by-synchronization hypothesis. We presented an ambiguous stimulus ("diamond illusion") to 12 observers. The display consisted of four oblique gratings drifting within circular apertures. Its interpretation fluctuates between bound ("diamond") and unbound (component gratings) percepts. To model a situation in which Gestalt-driven analysis contradicts the perceptually explicit bound interpretation, we modified the original diamond (OD) stimulus by speeding up one grating. Using OD and modified diamond (MD) stimuli, we managed to dissociate the neural correlates of Gestalt-related (OD vs. MD) and perception-related (bound vs. unbound) factors. Their interaction was expected to reveal the neural networks synchronized specifically in the conflict situation. The synchronization topography of EEG was analyzed with the multivariate S-estimator technique. We found that good Gestalt (OD vs. MD) was associated with a higher posterior synchronization in the beta-gamma band. The effect of perception manifested itself as reciprocal modulations over the posterior and anterior regions (theta/beta-gamma bands). Specifically, higher posterior and lower anterior synchronization supported the bound percept, and the opposite was true for the unbound percept. The interaction showed that binding under challenging perceptual conditions is sustained by enhanced parietal synchronization. We argue that this distributed pattern of synchronization relates to the processes of multistage integration ranging from early grouping operations in the visual areas to maintaining representations in the frontal networks of sensory memory.
Advanced mapping of environmental data: Geostatistics, Machine Learning and Bayesian Maximum Entropy
Resumo:
This book combines geostatistics and global mapping systems to present an up-to-the-minute study of environmental data. Featuring numerous case studies, the reference covers model dependent (geostatistics) and data driven (machine learning algorithms) analysis techniques such as risk mapping, conditional stochastic simulations, descriptions of spatial uncertainty and variability, artificial neural networks (ANN) for spatial data, Bayesian maximum entropy (BME), and more.
Resumo:
Etiologic research in psychiatry relies on an objectivist epistemology positing that human cognition is specified by the "reality" of the outer world, which consists of a totality of mind-independent objects. Truth is considered as some sort of correspondence relation between words and external objects, and mind as a mirror of nature. In our view, this epistemology considerably impedes etiologic research. Objectivist epistemology has been recently confronting a growing critique from diverse scientific fields. Alternative models in neurosciences (neuronal selection), artificial intelligence (connectionism), and developmental psychology (developmental biodynamics) converge in viewing living organisms as self-organizing systems. In this perspective, the organism is not specified by the outer world, but enacts its environment by selecting relevant domains of significance that constitute its world. The distinction between mind and body or organism and environment is a matter of observational perspective. These models from empirical sciences are compatible with fundamental tenets of philosophical phenomenology and hermeneutics. They imply consequences for research in psychopathology: symptoms cannot be viewed as disconnected manifestations of discrete localized brain dysfunctions. Psychopathology should therefore focus on how the person's self-coherence is maintained and on the understanding and empirical investigation of the systemic laws that govern neurodevelopment and the organization of human cognition.
Resumo:
The paper presents an approach for mapping of precipitation data. The main goal is to perform spatial predictions and simulations of precipitation fields using geostatistical methods (ordinary kriging, kriging with external drift) as well as machine learning algorithms (neural networks). More practically, the objective is to reproduce simultaneously both the spatial patterns and the extreme values. This objective is best reached by models integrating geostatistics and machine learning algorithms. To demonstrate how such models work, two case studies have been considered: first, a 2-day accumulation of heavy precipitation and second, a 6-day accumulation of extreme orographic precipitation. The first example is used to compare the performance of two optimization algorithms (conjugate gradients and Levenberg-Marquardt) of a neural network for the reproduction of extreme values. Hybrid models, which combine geostatistical and machine learning algorithms, are also treated in this context. The second dataset is used to analyze the contribution of radar Doppler imagery when used as external drift or as input in the models (kriging with external drift and neural networks). Model assessment is carried out by comparing independent validation errors as well as analyzing data patterns.
Resumo:
SOUND OBJECTS IN TIME, SPACE AND ACTIONThe term "sound object" describes an auditory experience that is associated with an acoustic event produced by a sound source. At cortical level, sound objects are represented by temporo-spatial activity patterns within distributed neural networks. This investigation concerns temporal, spatial and action aspects as assessed in normal subjects using electrical imaging or measurement of motor activity induced by transcranial magnetic stimulation (TMS).Hearing the same sound again has been shown to facilitate behavioral responses (repetition priming) and to modulate neural activity (repetition suppression). In natural settings the same source is often heard again and again, with variations in spectro-temporal and spatial characteristics. I have investigated how such repeats influence response times in a living vs. non-living categorization task and the associated spatio-temporal patterns of brain activity in humans. Dynamic analysis of distributed source estimations revealed differential sound object representations within the auditory cortex as a function of the temporal history of exposure to these objects. Often heard sounds are coded by a modulation in a bilateral network. Recently heard sounds, independently of the number of previous exposures, are coded by a modulation of a left-sided network.With sound objects which carry spatial information, I have investigated how spatial aspects of the repeats influence neural representations. Dynamics analyses of distributed source estimations revealed an ultra rapid discrimination of sound objects which are characterized by spatial cues. This discrimination involved two temporo-spatially distinct cortical representations, one associated with position-independent and the other with position-linked representations within the auditory ventral/what stream.Action-related sounds were shown to increase the excitability of motoneurons within the primary motor cortex, possibly via an input from the mirror neuron system. The role of motor representations remains unclear. I have investigated repetition priming-induced plasticity of the motor representations of action sounds with the measurement of motor activity induced by TMS pulses applied on the hand motor cortex. TMS delivered to the hand area within the primary motor cortex yielded larger magnetic evoked potentials (MEPs) while the subject was listening to sounds associated with manual than non- manual actions. Repetition suppression was observed at motoneuron level, since during a repeated exposure to the same manual action sound the MEPs were smaller. I discuss these results in terms of specialized neural network involved in sound processing, which is characterized by repetition-induced plasticity.Thus, neural networks which underlie sound object representations are characterized by modulations which keep track of the temporal and spatial history of the sound and, in case of action related sounds, also of the way in which the sound is produced.LES OBJETS SONORES AU TRAVERS DU TEMPS, DE L'ESPACE ET DES ACTIONSLe terme "objet sonore" décrit une expérience auditive associée avec un événement acoustique produit par une source sonore. Au niveau cortical, les objets sonores sont représentés par des patterns d'activités dans des réseaux neuronaux distribués. Ce travail traite les aspects temporels, spatiaux et liés aux actions, évalués à l'aide de l'imagerie électrique ou par des mesures de l'activité motrice induite par stimulation magnétique trans-crânienne (SMT) chez des sujets sains. Entendre le même son de façon répétitive facilite la réponse comportementale (amorçage de répétition) et module l'activité neuronale (suppression liée à la répétition). Dans un cadre naturel, la même source est souvent entendue plusieurs fois, avec des variations spectro-temporelles et de ses caractéristiques spatiales. J'ai étudié la façon dont ces répétitions influencent le temps de réponse lors d'une tâche de catégorisation vivant vs. non-vivant, et les patterns d'activité cérébrale qui lui sont associés. Des analyses dynamiques d'estimations de sources ont révélé des représentations différenciées des objets sonores au niveau du cortex auditif en fonction de l'historique d'exposition à ces objets. Les sons souvent entendus sont codés par des modulations d'un réseau bilatéral. Les sons récemment entendus sont codé par des modulations d'un réseau du côté gauche, indépendamment du nombre d'expositions. Avec des objets sonores véhiculant de l'information spatiale, j'ai étudié la façon dont les aspects spatiaux des sons répétés influencent les représentations neuronales. Des analyses dynamiques d'estimations de sources ont révélé une discrimination ultra rapide des objets sonores caractérisés par des indices spatiaux. Cette discrimination implique deux représentations corticales temporellement et spatialement distinctes, l'une associée à des représentations indépendantes de la position et l'autre à des représentations liées à la position. Ces représentations sont localisées dans la voie auditive ventrale du "quoi".Des sons d'actions augmentent l'excitabilité des motoneurones dans le cortex moteur primaire, possiblement par une afférence du system des neurones miroir. Le rôle des représentations motrices des sons d'actions reste peu clair. J'ai étudié la plasticité des représentations motrices induites par l'amorçage de répétition à l'aide de mesures de potentiels moteurs évoqués (PMEs) induits par des pulsations de SMT sur le cortex moteur de la main. La SMT appliquée sur le cortex moteur primaire de la main produit de plus grands PMEs alors que les sujets écoutent des sons associée à des actions manuelles en comparaison avec des sons d'actions non manuelles. Une suppression liée à la répétition a été observée au niveau des motoneurones, étant donné que lors de l'exposition répétée au son de la même action manuelle les PMEs étaient plus petits. Ces résultats sont discuté en termes de réseaux neuronaux spécialisés impliqués dans le traitement des sons et caractérisés par de la plasticité induite par la répétition. Ainsi, les réseaux neuronaux qui sous-tendent les représentations des objets sonores sont caractérisés par des modulations qui gardent une trace de l'histoire temporelle et spatiale du son ainsi que de la manière dont le son a été produit, en cas de sons d'actions.
Resumo:
This paper presents general problems and approaches for the spatial data analysis using machine learning algorithms. Machine learning is a very powerful approach to adaptive data analysis, modelling and visualisation. The key feature of the machine learning algorithms is that they learn from empirical data and can be used in cases when the modelled environmental phenomena are hidden, nonlinear, noisy and highly variable in space and in time. Most of the machines learning algorithms are universal and adaptive modelling tools developed to solve basic problems of learning from data: classification/pattern recognition, regression/mapping and probability density modelling. In the present report some of the widely used machine learning algorithms, namely artificial neural networks (ANN) of different architectures and Support Vector Machines (SVM), are adapted to the problems of the analysis and modelling of geo-spatial data. Machine learning algorithms have an important advantage over traditional models of spatial statistics when problems are considered in a high dimensional geo-feature spaces, when the dimension of space exceeds 5. Such features are usually generated, for example, from digital elevation models, remote sensing images, etc. An important extension of models concerns considering of real space constrains like geomorphology, networks, and other natural structures. Recent developments in semi-supervised learning can improve modelling of environmental phenomena taking into account on geo-manifolds. An important part of the study deals with the analysis of relevant variables and models' inputs. This problem is approached by using different feature selection/feature extraction nonlinear tools. To demonstrate the application of machine learning algorithms several interesting case studies are considered: digital soil mapping using SVM, automatic mapping of soil and water system pollution using ANN; natural hazards risk analysis (avalanches, landslides), assessments of renewable resources (wind fields) with SVM and ANN models, etc. The dimensionality of spaces considered varies from 2 to more than 30. Figures 1, 2, 3 demonstrate some results of the studies and their outputs. Finally, the results of environmental mapping are discussed and compared with traditional models of geostatistics.