14 resultados para Conventional water treatment
em Université de Lausanne, Switzerland
Resumo:
The complex ecology of free-living amoebae (FLA) and their role in spreading pathogenic microorganisms through water systems have recently raised considerable interest. In this study, we investigated the presence of FLA and amoebae-resisting bacteria (ARB) at various stages of a drinking water plant fed with river water. We isolated various amoebal species from the river and from several points within the plant, mostly at early steps of water treatment. Echinamoeba- and Hartmannella-related amoebae were mainly recovered in the drinking water plant whereas Acanthamoeba- and Naegleria-related amoebae were recovered from the river water and the sand filtration units. Some FLA isolates were recovered immediately after the ozonation step, thus suggesting resistance of these microorganisms to this disinfection procedure. A bacterial isolate related to Mycobacterium mucogenicum was recovered from an Echinamoeba-related amoeba isolated from ozone-treated water. Various other ARB were recovered using co-culture with axenic Acanthamoeba castellanii, including mycobacteria, legionella, Chlamydia-like organisms and various proteobacteria. Noteworthy, a new Parachlamydia acanthamoebae strain was recovered from river water and from granular activated carbon (GAC) biofilm. As amoebae mainly multiply in sand and GAC filters, optimization of filter backwash procedures probably offers a possibility to better control these protists and the risk associated with their intracellular hosts
Resumo:
Free-living amoebae constitute reservoirs for many bacteria including not only well-known pathogens but also emerging pathogens responsible for respiratory diseases, and contribute to the protection, survival and dissemination of these bacteria in water systems, despite the application of disinfection or thermal treatments. In this article we review the available information on the presence of free-living amoebae and amoebae-resisting bacteria in drinking water systems, on the factors that contribute to their presence in the water and/or the biofilms, on the possible control measures and their effectiveness, and we identify some gaps in current knowledge needing further research.
Resumo:
Chlamydiae are obligate intracellular bacteria infecting free-living amoebae, vertebrates and some invertebrates. Novel members are regularly discovered, and there is accumulating evidence supporting a very important diversity of chlamydiae in the environment. In this study, we investigated the presence of chlamydiae in a drinking water treatment plant. Samples were used to inoculate Acanthamoeba monolayers (Acanthamoeba co-culture), and to recover autochthonous amoebae onto non-nutritive agar. Chlamydiae were searched for by a pan-chlamydia 16S rRNA gene PCR from both Acanthamoeba co-cultures and autochthonous amoebae, and phylotypes determined by 16S rRNA gene sequencing. Autochthonous amoebae also were identified by 18S rRNA gene amplification and sequencing. From a total of 79 samples, we recovered eight chlamydial strains by Acanthamoeba co-culture, but only one of 28 amoebae harboured a chlamydia. Sequencing results and phylogenetic analysis showed our strains belonging to four distinct chlamydial lineages. Four strains, including the strain recovered within its natural host, belonged to the Parachlamydiaceae; two closely related strains belonged to the Criblamydiaceae; two distinct strains clustered with Rhabdochlamydia spp.; one strain clustered only with uncultured environmental clones. Our results confirmed the usefulness of amoeba co-culture to recover novel chlamydial strains from complex samples and demonstrated the huge diversity of chlamydiae in the environment, by identifying several new species including one representing the first strain of a new family.
Resumo:
A total of 49 wastewater samples from 23 different wastewater treatment plants (WWTPs) were analyzed using real-time quantitative polymerase chain reaction for the presence and quantity of thermotolerant campylobacters. Thermotolerant campylobacters were detected in 87.5% (21/24) and 64% (16/25) of untreated and treated wastewater samples, respectively. Their concentration was sufficiently high to be quantified in 20.4% (10/49) of the samples. In these samples, the concentration ranged from 68 000 to 2292 000 cells/L in untreated wastewater and from 10 800 to 28 000 cells/L in treated water. We conclude that thermotolerant campylobacters present a health hazard for workers at WWTPs in Switzerland. [Authors]
Resumo:
In this study, we enlarged our previous investigation focusing on the biodiversity of chlamydiae and amoebae in a drinking water treatment plant, by the inclusion of two additional plants and by searching also for the presence of legionellae and mycobacteria. Autochthonous amoebae were recovered onto non-nutritive agar, identified by 18S rRNA gene sequencing, and screened for the presence of bacterial endosymbionts. Bacteria were also searched for by Acanthamoeba co-culture. From a total of 125 samples, we recovered 38 amoebae, among which six harboured endosymbionts (three chlamydiae and three legionellae). In addition, we recovered by amoebal co-culture 11 chlamydiae, 36 legionellae (no L. pneumophila), and 24 mycobacteria (all rapid-growers). Two plants presented a similar percentage of samples positive for chlamydiae (11%), mycobacteria (20%) and amoebae (27%), whereas in the third plant the number of recovered bacteria was almost twice higher. Each plant exhibited a relatively high specific microbiota. Amoebae were mainly represented by various Naegleria species, Acanthamoeba species and Hartmannella vermiformis. Parachlamydiaceae were the most abundant chlamydiae (8 strains in total), and in this study we recovered a new genus-level strain, along with new chlamydiae previously reported. Similarly, about 66% of the recovered legionellae and 47% of the isolated mycobacteria could represent new species. Our work highlighted a high species diversity among legionellae and mycobacteria, dominated by putative new species, and it confirmed the presence of chlamydiae in these artificial water systems.
Resumo:
Drinking water is currently a scarce world resource, the preparation of which requires complex treatments that include clarification of suspended particles and disinfection. Seed extracts of Moringa oleifera Lam., a tropical tree, have been proposed as an environment-friendly alternative, due to their traditional use for the clarification of drinking water. However, the precise nature of the active components of the extract and whether they may be produced in recombinant form are unknown. Here we show that recombinant or synthetic forms of a cationic seed polypeptide mediate efficient sedimentation of suspended mineral particles and bacteria. Unexpectedly, the polypeptide was also found to possesses a bactericidal activity capable of disinfecting heavily contaminated water. Furthermore, the polypeptide has been shown to efficiently kill several pathogenic bacteria, including antibiotic-resistant isolates of Staphylococcus, Streptococcus, and Legionella species. Thus, this polypeptide displays the unprecedented feature of combining water purification and disinfectant properties. Identification of an active principle derived from the seed extracts points to a range of potential for drinking water treatment or skin and mucosal disinfection in clinical settings.
Resumo:
This study characterized the fecal indicator bacteria (FIB), including Escherichia coli (E. coli) and Enteroccocus (ENT), disseminated over time in the Bay of Vidy, which is the most contaminated area of Lake Geneva. Sediments were collected from a site located at similar to 500 m from the present waste water treatment plant (WWTP) outlet pipe, in front of the former WWTP outlet pipe, which was located at only 300 m from the coastal recreational area (before 2001). E. coil and ENT were enumerated in sediment suspension using the membrane filter method. The FIB characterization was performed for human Enterococcus faecalis (E. faecalis) and Enterococcus faecium (E. faecium) and human specific bacteroides by PCR using specific primers and a matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Bacterial cultures revealed that maximum values of 35.2 x 10(8) and 6.6 x 10(6) CFU g(-1) dry sediment for E. coil and ENT, respectively, were found in the sediments deposited following eutrophication of Lake Geneva in the 1970s. whereas the WWTP started operating in 1964. The same tendency was observed for the presence of human fecal pollution: the percentage of PCR amplification with primers ESP-1/ESP-2 for E. faecalis and E. faecium indicated that more than 90% of these bacteria were from human origin. Interestingly, the PCR assays for specific-human bacteroides HF183/HF134 were positive for DNA extracted from all isolated strains of sediment surrounding WWPT outlet pipe discharge. The MALDI-TOF MS confirmed the presence of general E. coli and predominance E. faecium in isolated strains. Our results demonstrated that human fecal bacteria highly increased in the sediments contaminated with WWTP effluent following the eutrophication of Lake Geneva. Additionally, other FIB cultivable strains from animals or adapted environmental strains were detected in the sediment of the bay. The approaches used in this research are valuable to assess the temporal distribution and the source of the human fecal pollution in aquatic environments. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Astonishing as it may seem, one organism's waste is often ideal food for another. Many waste products generated by human activities are routinely degraded by microorganisms under controlled conditions during waste-water treatment. Toxic pollutants resulting from inadvertent releases, such as oil spills, are also consumed by bacteria, the simplest organisms on Earth. Biodegradation of toxic or particularly persistent compounds, however, remains problematic. What has escaped the attention of many is that bacteria exposed to pollutants can adapt to them by mutating or acquiring degradative genes. These bacteria can proliferate in the environment as a result of the selection pressures created by pollutants. The positive outcome of selection pressure is that harmful compounds may eventually be broken down completely through biodegradation. The downside is that biodegradation may require extremely long periods of time. Although the adaptation process has been shown to be reproducible, it remains very difficult to predict.
Resumo:
Despite using modern microbiological diagnostic approaches, the aetiological agents of pneumonia remain unidentified in about 50% of cases. Some bacteria that grow poorly or not at all in axenic media used in routine clinical bacteriology laboratory but which can develop inside amoebae may be the agents of these lower respiratory tract infections (RTIs) of unexplained aetiology. Such amoebae-resisting bacteria, which coevolved with amoebae to resist their microbicidal machinery, may have developed virulence traits that help them survive within human macrophages, i.e. the first line of innate immune defence in the lung. We review here the current evidence for the emerging pathogenic role of various amoebae-resisting microorganisms as agents of RTIs in humans. Specifically, we discuss the emerging pathogenic roles of Legionella-like amoebal pathogens, novel Chlamydiae (Parachlamydia acanthamoebae, Simkania negevensis), waterborne mycobacteria and Bradyrhizobiaceae (Bosea and Afipia spp.).
Resumo:
The increase in seafood production, especially in mariculture worldwide, has brought out the need of continued monitoring of shellfish production areas in order to ensure safety to human consumption. The purpose of this research was to evaluate pathogenic protozoa, viruses and bacteria contamination in oysters before and after UV depuration procedure, in brackish waters at all stages of cultivation and treatment steps and to enumerate microbiological indicators of fecal contamination from production site up to depuration site in an oyster cooperative located at the Southeastern estuarine area of Brazil. Oysters and brackish water were collected monthly from September 2009 to November 2010. Four sampling sites were selected for enteropathogens analysis: site 1- oyster growth, site 2- catchment water (before UV depuration procedure), site 3 - filtration stage of water treatment (only for protozoa analysis) and site 4- oyster's depuration tank. Three microbiological indicators ! were examined at sites 1, 2 and 4. The following pathogenic microorganisms were searched: Giardia cysts, Cryptosporidium oocysts, Human Adenovirus (HAdV), Hepatitis A virus (HAV), Human Norovirus (HnoV) (genogroups I and II), JC strain Polyomavirus (JCPyV) and Salmonella sp. Analysis consisted of molecular detection (qPCR) for viruses (oysters and water samples); immunomagnetic separation followed by direct immunofluorescence assay for Cryptosporidium oocysts and Giardia cysts and also molecular detection (PCR) for the latter (oysters and water samples); commercial kit (Reveal-Neogee (R)) for Salmonella analysis (oysters). Giardia was the most prevalent pathogen in all sites where it was detected: 36.3%, 18.1%, 36.3% and 27.2% of water from sites 1, 2, 3 and 4 respectively; 36.3% of oysters from site 1 and 54.5% of depurated oysters were harboring Giardia cysts. The huge majority of contaminated samples were classified as Giardia duodenalis. HAdv was detected in water and o! ysters from growth site and HnoV GI in two batches of oysters ! (site 1) in huge concentrations (2.11 x 10(13), 3.10 x 10(12) gc/g). In depuration tank site, Salmonella sp., HAV (4.84 x 10(3)) and HnoV GII (7.97 x 10(14)) were detected once in different batches of oysters. Cryptosporidium spp. oocysts were present in 9.0% of water samples from site four. These results reflect the contamination of oysters even when UV depuration procedures are employed in this shellfish treatment plant. Moreover, the molecular comprehension of the sources of contamination is necessary to develop an efficient management strategy allied to shellfish treatment improvement to prevent foodborne illnesses. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Trilateral retinoblastoma (TRB) is a rare condition characterized by an intracranial neuroblastic tumor associated with bilateral or unilateral retinoblastoma (RB). The outcome is almost always fatal. An 18-month-old patient with familial bilateral RB was referred for a pineal lesion detected on a screening by magnetic resonance imaging. The child, considered inoperable by 2 different neurosurgical teams, was treated with conventional chemotherapy (methotrexate, vincristine, vepeside, cyclophosphamide, and carboplatin) plus tandem transplantation (vepeside/carboplatin and thiotepa/mephalan) followed by local radiotherapy. At 80 months from the diagnosis of TRB, the patient is alive and in complete remission, with no neuropsychologic consequences. An early and aggressive treatment may improve the prognosis of TRB.
Resumo:
Cyclosporine A (CsA) has been demonstrated to be effective for the treatment of a variety of ophthalmological conditions, including ocular surface disorders such as the dry eye disease (DED). Since CsA is characterised by its low water solubility, the development of a topical ophthalmic formulation represents an interesting pharmaceutical question. In the present study, two different strategies to address this challenge were studied and compared: (i) a water-soluble CsA prodrug formulated within an aqueous solution and (ii) a CsA oil-in-water emulsion (Restasis, Allergan Inc., Irvine, CA). First, the prodrug formulation was shown to have an excellent ocular tolerance as well as no influence on the basal tear production; maintaining the ocular surface properties remained unchanged. Then, in order to allow in vivo investigations, a specific analytical method based on ultra high pressure liquid chromatography coupled with triple quadrupole mass spectrometer (UHPLC-MS/MS) was developed and optimised to quantify CsA in ocular tissues and fluids. The CsA ocular kinetics in lachrymal fluid for both formulations were found to be similar between 15 min and 48 h. The CsA ocular distribution study evidenced the ability of the prodrug formulation to penetrate into the eye, achieving therapeutically active CsA levels in tissues of both the anterior and posterior segments. In addition, the detailed analysis of the in vivo data using a bicompartmental model pointed out a higher bioavailability and lower elimination rate for CsA when it is generated from the prodrug than after direct application as an emulsion. The interesting in vivo properties displayed by the prodrug solution make it a safe and suitable option for the treatment of DED.