193 resultados para Conventional matching networks
em Université de Lausanne, Switzerland
Resumo:
The genetic characterization of unbalanced mixed stains remains an important area where improvement is imperative. In fact, with current methods for DNA analysis (Polymerase Chain Reaction with the SGM Plus™ multiplex kit), it is generally not possible to obtain a conventional autosomal DNA profile of the minor contributor if the ratio between the two contributors in a mixture is smaller than 1:10. This is a consequence of the fact that the major contributor's profile 'masks' that of the minor contributor. Besides known remedies to this problem, such as Y-STR analysis, a new compound genetic marker that consists of a Deletion/Insertion Polymorphism (DIP), linked to a Short Tandem Repeat (STR) polymorphism, has recently been developed and proposed elsewhere in literature [1]. The present paper reports on the derivation of an approach for the probabilistic evaluation of DIP-STR profiling results obtained from unbalanced DNA mixtures. The procedure is based on object-oriented Bayesian networks (OOBNs) and uses the likelihood ratio as an expression of the probative value. OOBNs are retained in this paper because they allow one to provide a clear description of the genotypic configuration observed for the mixed stain as well as for the various potential contributors (e.g., victim and suspect). These models also allow one to depict the assumed relevance relationships and perform the necessary probabilistic computations.
Resumo:
This paper analyses and discusses arguments that emerge from a recent discussion about the proper assessment of the evidential value of correspondences observed between the characteristics of a crime stain and those of a sample from a suspect when (i) this latter individual is found as a result of a database search and (ii) remaining database members are excluded as potential sources (because of different analytical characteristics). Using a graphical probability approach (i.e., Bayesian networks), the paper here intends to clarify that there is no need to (i) introduce a correction factor equal to the size of the searched database (i.e., to reduce a likelihood ratio), nor to (ii) adopt a propositional level not directly related to the suspect matching the crime stain (i.e., a proposition of the kind 'some person in (outside) the database is the source of the crime stain' rather than 'the suspect (some other person) is the source of the crime stain'). The present research thus confirms existing literature on the topic that has repeatedly demonstrated that the latter two requirements (i) and (ii) should not be a cause of concern.
Resumo:
Computational network analysis provides new methods to analyze the brain's structural organization based on diffusion imaging tractography data. Networks are characterized by global and local metrics that have recently given promising insights into diagnosis and the further understanding of psychiatric and neurologic disorders. Most of these metrics are based on the idea that information in a network flows along the shortest paths. In contrast to this notion, communicability is a broader measure of connectivity which assumes that information could flow along all possible paths between two nodes. In our work, the features of network metrics related to communicability were explored for the first time in the healthy structural brain network. In addition, the sensitivity of such metrics was analysed using simulated lesions to specific nodes and network connections. Results showed advantages of communicability over conventional metrics in detecting densely connected nodes as well as subsets of nodes vulnerable to lesions. In addition, communicability centrality was shown to be widely affected by the lesions and the changes were negatively correlated with the distance from lesion site. In summary, our analysis suggests that communicability metrics that may provide an insight into the integrative properties of the structural brain network and that these metrics may be useful for the analysis of brain networks in the presence of lesions. Nevertheless, the interpretation of communicability is not straightforward; hence these metrics should be used as a supplement to the more standard connectivity network metrics.
Resumo:
This paper analyses and discusses arguments that emerge from a recent discussion about the proper assessment of the evidential value of correspondences observed between the characteristics of a crime stain and those of a sample from a suspect when (i) this latter individual is found as a result of a database search and (ii) remaining database members are excluded as potential sources (because of different analytical characteristics). Using a graphical probability approach (i.e., Bayesian networks), the paper here intends to clarify that there is no need to (i) introduce a correction factor equal to the size of the searched database (i.e., to reduce a likelihood ratio), nor to (ii) adopt a propositional level not directly related to the suspect matching the crime stain (i.e., a proposition of the kind 'some person in (outside) the database is the source of the crime stain' rather than 'the suspect (some other person) is the source of the crime stain'). The present research thus confirms existing literature on the topic that has repeatedly demonstrated that the latter two requirements (i) and (ii) should not be a cause of concern.
Resumo:
Abnormalities in the topology of brain networks may be an important feature and etiological factor for psychogenic non-epileptic seizures (PNES). To explore this possibility, we applied a graph theoretical approach to functional networks based on resting state EEGs from 13 PNES patients and 13 age- and gender-matched controls. The networks were extracted from Laplacian-transformed time-series by a cross-correlation method. PNES patients showed close to normal local and global connectivity and small-world structure, estimated with clustering coefficient, modularity, global efficiency, and small-worldness (SW) metrics, respectively. Yet the number of PNES attacks per month correlated with a weakness of local connectedness and a skewed balance between local and global connectedness quantified with SW, all in EEG alpha band. In beta band, patients demonstrated above-normal resiliency, measured with assortativity coefficient, which also correlated with the frequency of PNES attacks. This interictal EEG phenotype may help improve differentiation between PNES and epilepsy. The results also suggest that local connectivity could be a target for therapeutic interventions in PNES. Selective modulation (strengthening) of local connectivity might improve the skewed balance between local and global connectivity and so prevent PNES events.
Resumo:
The aim of this retrospective study was to compare the clinical and radiographic results after TKA (PFC, DePuy), performed either by computer assisted navigation (CAS, Brainlab, Johnson&Johnson) or by conventional means. Material and methods: Between May and December 2006 we reviewed 36 conventional TKA performed between 2002 and 2003 (group A) and 37 navigated TKA performed between 2005 and 2006 (group B) by the same experienced surgeon. The mean age in group A was 74 years (range 62-90) and 73 (range 58-85) in group B with a similar age distribution. The preoperative mechanical axes in group A ranged from -13° varus to +13° valgus (mean absolute deviation 6.83°, SD 3.86), in group B from -13° to +16° (mean absolute deviation 5.35, SD 4.29). Patients with a previous tibial osteotomy or revision arthroplasty were excluded from the study. Examination was done by an experienced orthopedic resident independent of the surgeon. All patients had pre- and postoperative long standing radiographs. The IKSS and the WOMAC were utilized to determine the clinical outcome. Patient's degree of satisfaction was assessed on a visual analogous scale (VAS). Results: 32 of the 37 navigated TKAs (86,5%) showed a postoperative mechanical axis within the limits of 3 degrees of valgus or varus deviation compared to only 24 (66%) of the 36 standard TKAs. This difference was significant (p = 0.045). The mean absolute deviation from neutral axis was 3.00° (range -5° to +9°, SD: 1.75) in group A in comparison to 1.54° (range -5° to +4°, SD: 1.41) in group B with a highly significant difference (p = 0.000). Furthermore, both groups showed a significant postoperative improvement of their mean IKSS-values (group A: 89 preoperative to 169 postoperative, group B 88 to 176) without a significant difference between the two groups. Neither the WOMAC nor the patient's degree of satisfaction - as assessed by VAS - showed significant differences. Operation time was significantly higher in group B (mean 119.9 min.) than in group A (mean 99.6 min., p <0.000). Conclusion: Our study showed consistent significant improvement of postoperative frontal alignment in TKA by computer assisted navigation (CAS) compared to standard methods, even in the hands of a surgeon well experienced in standard TKA implantation. However, the follow-up time of this study was not long enough to judge differences in clinical outcome. Thus, the relevance of computer navigation for clinical outcome and survival of TKA remains to be proved in long term studies to justify the longer operation time. References 1 Stulberg SD. Clin Orth Rel Res. 2003;(416):177-84. 2 Chauhan SK. JBJS Br. 2004;86(3):372-7. 3 Bäthis H, et al. Orthopäde. 2006;35(10):1056-65.
Resumo:
The majority of diseases in the retina are caused by genetic mutations affecting the development and function of photoreceptor cells. The transcriptional networks directing these processes are regulated by genes such as nuclear hormone receptors. The nuclear hormone receptor gene Rev-erb alpha/Nr1d1 has been widely studied for its role in the circadian cycle and cell metabolism, however its role in the retina is unknown. In order to understand the role of Rev-erb alpha/Nr1d1 in the retina, we evaluated the effects of loss of Nr1d1 to the developing retina and its co-regulation with the photoreceptor-specific nuclear receptor gene Nr2e3 in the developing and mature retina. Knock-down of Nr1d1 expression in the developing retina results in pan-retinal spotting and reduced retinal function by electroretinogram. Our studies show that NR1D1 protein is co-expressed with NR2E3 in the outer neuroblastic layer of the developing mouse retina. In the adult retina, NR1D1 is expressed in the ganglion cell layer and is co-expressed with NR2E3 in the outer nuclear layer, within rods and cones. Several genes co-targeted by NR2E3 and NR1D1 were identified that include: Nr2c1, Recoverin, Rgr, Rarres2, Pde8a, and Nupr1. We examined the cyclic expression of Nr1d1 and Nr2e3 over a twenty-four hour period and observed that both nuclear receptors cycle in a similar manner. Taken together, these studies reveal a novel role for Nr1d1, in conjunction with its cofactor Nr2e3, in regulating transcriptional networks critical for photoreceptor development and function.
Resumo:
Locating new wind farms is of crucial importance for energy policies of the next decade. To select the new location, an accurate picture of the wind fields is necessary. However, characterizing wind fields is a difficult task, since the phenomenon is highly nonlinear and related to complex topographical features. In this paper, we propose both a nonparametric model to estimate wind speed at different time instants and a procedure to discover underrepresented topographic conditions, where new measuring stations could be added. Compared to space filling techniques, this last approach privileges optimization of the output space, thus locating new potential measuring sites through the uncertainty of the model itself.
Resumo:
The transition from wakefulness to sleep represents the most conspicuous change in behavior and the level of consciousness occurring in the healthy brain. It is accompanied by similarly conspicuous changes in neural dynamics, traditionally exemplified by the change from "desynchronized" electroencephalogram activity in wake to globally synchronized slow wave activity of early sleep. However, unit and local field recordings indicate that the transition is more gradual than it might appear: On one hand, local slow waves already appear during wake; on the other hand, slow sleep waves are only rarely global. Studies with functional magnetic resonance imaging also reveal changes in resting-state functional connectivity (FC) between wake and slow wave sleep. However, it remains unclear how resting-state networks may change during this transition period. Here, we employ large-scale modeling of the human cortico-cortical anatomical connectivity to evaluate changes in resting-state FC when the model "falls asleep" due to the progressive decrease in arousal-promoting neuromodulation. When cholinergic neuromodulation is parametrically decreased, local slow waves appear, while the overall organization of resting-state networks does not change. Furthermore, we show that these local slow waves are structured macroscopically in networks that resemble the resting-state networks. In contrast, when the neuromodulator decrease further to very low levels, slow waves become global and resting-state networks merge into a single undifferentiated, broadly synchronized network.
Resumo:
Ultrasound detection of sub-clinical atherosclerosis (ATS) may help identify individuals at high cardiovascular risk. Most studies evaluated intima-media thickness (IMT) at carotid level. We compared the relationships between main cardiovascular risk factors (CVRF) and five indicators of ATS (IMT, mean and maximal plaque thickness, mean and maximal plaque area) at both carotid and femoral levels. Ultrasound was performed on 496 participants aged 45-64 years randomly selected from the general population of the Republic of Seychelles. 73.4 % participants had ≥ 1 plaque (IMT thickening ≥ 1.2 mm) at carotid level and 67.5 % at femoral level. Variance (adjusted R2) contributed by age, sex and CVRF (smoking, LDL-cholesterol, HDL-cholesterol, blood pressure, diabetes) in predicting any of the ATS markers was larger at femoral than carotid level. At both carotid and femoral levels, the association between CVRF and ATS was stronger based on plaque-based markers than IMT. Our findings show that the associations between CVRF and ATS markers were stronger at femoral than carotid level, and with plaque-based markers rather than IMT. Pending comparison of these markers using harder cardiovascular endpoints, our findings suggest that markers based on plaque morphology assessed at femoral artery level might be useful cardiovascular risk predictors.
Resumo:
To determine viral subtypes and resistance mutations to antiretroviral treatment (ART) in untreated HIV-1 acutely infected subjects from Southwest Switzerland. Clinical samples were obtained from the HIV primary infection cohort from Lausanne. Briefly, pol gene was amplified by nested PCR and sequenced to generate a 1?kb sequence spanning protease and reverse transcriptase key protein regions. Nucleotide sequences were used to assess viral genotype and ART resistance mutations. Blood specimens and medical information were obtained from 30 patients. Main viral subtypes corresponded to clade B, CRF02_AG, and F1. Resistant mutations to PIs consisted of L10V and accessory mutations 16E and 60E present in all F1 clades. The NNRTI major resistant mutation 103N was detected in all F1 viruses and in other 2 clades. Additionally, we identified F1 sequences from other 6 HIV infected and untreated individuals from Southwest Switzerland, harboring nucleotide motifs and resistance mutations to ART as observed in the F1 strains from the cohort. These data reveal a high transmission rate (16.6%) for NNRTI resistant mutation 103N in a cohort of HIV acute infection. Three of the 5 resistant strains were F1 clades closely related to other F1 isolates from HIV-1 infection untreated patients also coming from Southwest Switzerland. Overall, we provide strong evidence towards an HIV-1 resistant transmission network in Southwest Switzerland. These findings have relevant implications for the local molecular mapping of HIV-1 and future ART surveillance studies in the region.
Resumo:
Neurally adjusted ventilatory assist (NAVA) is a ventilation assist mode that delivers pressure in proportionality to electrical activity of the diaphragm (Eadi). Compared to pressure support ventilation (PS), it improves patient-ventilator synchrony and should allow a better expression of patient's intrinsic respiratory variability. We hypothesize that NAVA provides better matching in ventilator tidal volume (Vt) to patients inspiratory demand. 22 patients with acute respiratory failure, ventilated with PS were included in the study. A comparative study was carried out between PS and NAVA, with NAVA gain ensuring the same peak airway pressure as PS. Robust coefficients of variation (CVR) for Eadi and Vt were compared for each mode. The integral of Eadi (ʃEadi) was used to represent patient's inspiratory demand. To evaluate tidal volume and patient's demand matching, Range90 = 5-95 % range of the Vt/ʃEadi ratio was calculated, to normalize and compare differences in demand within and between patients and modes. In this study, peak Eadi and ʃEadi are correlated with median correlation of coefficients, R > 0.95. Median ʃEadi, Vt, neural inspiratory time (Ti_ ( Neural )), inspiratory time (Ti) and peak inspiratory pressure (PIP) were similar in PS and NAVA. However, it was found that individual patients have higher or smaller ʃEadi, Vt, Ti_ ( Neural ), Ti and PIP. CVR analysis showed greater Vt variability for NAVA (p < 0.005). Range90 was lower for NAVA than PS for 21 of 22 patients. NAVA provided better matching of Vt to ʃEadi for 21 of 22 patients, and provided greater variability Vt. These results were achieved regardless of differences in ventilatory demand (Eadi) between patients and modes.