67 resultados para Controlled release, HIV microbicide, dapivirine, maraviroc, vaginal ring

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to design microspheres combining sustained delivery and enhanced intracellular penetration for ocular administration of antisense oligonucleotides. Nanosized complexes of antisense TGF-beta2 phosphorothioate oligonucleotides (PS-ODN) with polyethylenimine (PEI), and naked PS-ODN were encapsulated into poly(lactide-co-glycolide) microspheres prepared by the double-emulsion solvent evaporation method. The PS-ODN was introduced either naked or complexed in the inner aqueous phase of the first emulsion. We observed a marked influence of microsphere composition on porosity, size distribution and PS-ODN encapsulation efficiency. Mainly, the presence of PEI induced the formation of large pores observed onto microsphere surface. Introduction of NaCl in the outer aqueous phase increased the encapsulation efficiency and reduced microsphere porosity. In vitro release kinetic of PS-ODN was also investigated. Clearly, the higher the porosity, the faster was the release and the higher was the burst effect. Using an analytical solution of Fick's second law of diffusion, it was shown that the early phase of PS-ODN and PS-ODN-PEI complex release was primarily controlled by pure diffusion, irrespectively of the type of microsphere. Finally, microspheres containing antisense TGF-beta2 nanosized complexes were shown, after subconjunctival administration to rabbit, to significantly increase intracellular penetration of ODN in conjunctival cells and subsequently to improve bleb survival in a rabbit experimental model of filtering surgery. These results open up interesting prospective for the local controlled delivery of genetic material into the eye.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE OF REVIEW: Definition of T cell immune correlates in HIV infection remains a lofty goal towards our understanding of the HIV-specific immune response. This review will focus upon recent developments and controversies in our understanding of protective T cell responses against HIV. RECENT FINDINGS: It has become clear that multiple functions and phenotypic markers of T cells must be assessed to accurately characterize the complexity of CD4 and CD8 T cell responses. While evidence indicates that a hallmark of protective immune responses in HIV infection is the presence of 'polyfunctional' T cell responses, a disconnect remains between the function and phenotype of effective HIV-specific T cells. Moreover, there may be inherent differences in the ability of specific human leukocyte antigen class I families to promote CD8 T cell effector versus polyfunctional responses. It remains to be determined how polyfunctional responses arise in HIV infection, which functions are important for control, and whether surface phenotype markers provide an indication of protective capacity. SUMMARY: Polyfunctional and phenotypic assessment of T cell responses have clearly advanced our understanding of HIV specific immune responses. Critical questions remain, however, especially whether polyfunctional T cell responses control, or are controlled by, HIV replication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The aim of this study was to evaluate the efficacy of sustained release of vancomycin and teicoplanin from a resorbable gelatin glycerol sponge, in order to establish a new delivery system for local anti-infective therapy. MATERIALS AND METHODS: 60 plasticized glycerol gelatin sponges containing either 10 or 20% gelatin (w/v) were incubated in vancomycin or teicoplanin solution at 20 degrees C for either 1 or 24 h. In vitro release properties of the sponges were investigated over a period of 1 week by determining the levels of vancomycin and teicoplanin eluted in plasma using fluorescent polarization immunoassay. The rate constant and the half-life for the antibiotic release of each group were calculated by linear regression assuming first order kinetics. RESULTS: Presoaking for 24 h was associated with a significant increase in the total antibiotic release in all groups opposed to 1 h of incubation, except for the 10% sponges presoaked in teicoplanin. Doubling the gelatin content of the sponges from 10 to 20% significantly increased the total release of antibiotic load only in teicoplanin-containing sponges after 24 h incubation. In all corresponding groups investigated, release of vancomycin was more prolonged compared to teicoplanin, which allowed a gradual release beyond 5 days. The half-life (h +/- SEM) of both types of vancomycin-containing sponges was significantly prolonged by 24 h incubation in comparison to 1 h incubation (29.1 +/- 5.9 vs 5.9 +/- 1.0; p < 0.001, 30.0 +/- 2.1 vs 11.1 +/- 1.9; p < 0.001). However, neither doubling the gelatin content of the sponges nor a prolonged incubation was associated with a significantly prolonged delivery of teicoplanin. CONCLUSION: This study demonstrated a better diffusion-controlled release of vancomycin-impregnated glycerol gelatin sponges compared to those pretreated with teicoplanin. The plasticized glycerol gelatin sponge may be a promising carrier for the application of vancomycin to infected wounds for local anti-infective therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Macrophages play key roles in inflammatory disorders. Therefore, they are targets of treatments aiming at their local destruction in inflammation sites. However, injection of low molecular mass therapeutics, including photosensitizers, in inflamed joints results in their rapid efflux out of the joints, and poor therapeutic index. To improve selective uptake and increase retention of therapeutics in inflamed tissues, hydrophilic nanogels based on chitosan, of which surface was decorated with hyaluronate and which were loaded with one of three different anionic photosensitizers were developed. Optimal uptake of these functionalized nanogels by murine RAW 264.7 or human THP-1 macrophages as models was achieved after <4h incubation, whereas only negligible uptake by murine fibroblasts used as control cells was observed. The uptake by cells and the intracellular localization of the photosensitizers, of the fluorescein-tagged chitosan and of the rhodamine-tagged hyaluronate were confirmed by fluorescence microscopy. Photodynamic experiments revealed good cell photocytotoxicity of the photosensitizers entrapped in the nanogels. In a mouse model of rheumatoid arthritis, injection of free photosensitizers resulted in their rapid clearance from the joints, while nanogel-encapsulated photosensitizers were retained in the inflamed joints over a longer period of time. The photodynamic treatment of the inflamed joints resulted in a reduction of inflammation comparable to a standard corticoid treatment. Thus, hyaluronate-chitosan nanogels encapsulating therapeutic agents are promising materials for the targeted delivery to macrophages and long-term retention of therapeutics in leaky inflamed articular joints.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We evaluated the benefits of a novel formulation of vasoactive intestinal peptide (VIP) based on the incorporation of VIP-loaded rhodamine-conjugated liposomes (VIP-Rh-Lip) within hyaluronic acid (HA) gel (Gel-VIP-Rh-Lip) for the treatment of endotoxin-induced uveitis (EIU) in comparison with VIP-Rh-Lip alone. In vitro release study and rheological analysis showed that interactions between HA chains and liposomes resulted in increased viscosity and reinforced elasticity of the gel. In vivo a single intravitreal injection of Gel-VIP-Rh-Lip was performed in rats 7 days prior to uveitis induction by subcutaneous lipopolysaccharide injection. The maximal ocular inflammation occurs within 16-24 h in controls (VIP-Rh-Lip, unloaded-Rh-Lip). Whereas intraocular injection of VIP-Rh-Lip had no effect on EIU severity compared with controls, Gel-VIP-Rh-Lip reduced significantly the clinical score and number of inflammatory cells infiltrating the eye. The fate of liposomes, VIP and HA in the eyes, regional and inguinal lymph nodes and spleen was analyzed by immunostaining and fluorescence microscopy. Retention of liposomes by HA gel was observed in vitro and in vivo. Inflammation severity seemed to impact on system stability resulting in the delayed release of VIP. Thus, HA gel containing VIP-Rh-Lip is an efficient strategy to obtain a sustained delivery of VIP in ocular and lymph node tissues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The efficacy of an antisense oligonucleotide (ODN17) cationic nanoemulsion directed at VEGF-R2 to reduce neovascularization was evaluated using rat corneal neovascularization and retinopathy of prematurity (ROP) mouse models. Application of saline solution or scrambled ODN17 solution on eyes of rats led to the highest extent of corneal neovascularization. The groups treated with blank nanoemulsion or scrambled ODN17 nanoemulsion showed moderate inhibition in corneal neovascularization with no significant difference with the saline and scrambled ODN17 control solution groups, while the groups treated with ODN17 solution or Avastin® (positive ODN17 control) clearly elicited marked significant inhibition in corneal neovascularization confirming the results reported in the literature. The highest significant corneal neovascularization inhibition efficiency was noted in the groups treated with ODN17 nanoemulsion (topical and subconjunctivally). However, in the ROP mouse model, the ODN17 in PBS induced a 34% inhibition of retinal neovascularization when compared to the aqueous-vehicle-injected eyes. A significantly higher inhibition of vitreal neovascularization (64%) was observed in the group of eyes treated with ODN17 nanoemulsion. No difference in extent of neovascularization was observed between blank nanoemulsion, scrambled ODN17 nanoemulsion, vehicle or non-treated eyes. The overall results indicate that cationic nanoemulsion can be considered a promising potential ocular delivery system and an effective therapeutic tool of high clinical significance in the prevention and forthcoming treatment of ocular neovascular diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On en parle ! Il est question de la suppression des règles par l'administration de contraceptifs oestro-progestatifs (pilule, patch ou anneau vaginal) en cycles longs (cycles prolongés ; cycles étendus ; extended cycles) entraînant des périodes d'aménorrhée, rythmées par des intervalles libres de sept jours sans administration hormonale. L'indication à ce mode de prescription est presque unanimement reconnue pour le traitement des pathologies bénéficiant de la suppression des règles et des fluctuations hormonales inhérentes à l'activité ovarienne. Ce traitement suscite cependant également de l'intérêt pour une indication du type mode de vie. Les modalités thérapeutiques, les avantages et inconvénients sont examinés à la lumière de l'attente des femmes et de leur droit au choix éclairé et libre. Let's talk about it ! Suppression of menstruation, by extending the duration of contraceptives containing estro-progestins (oral contraception, patch or vaginal ring) to long cycles, is a new approach in the field of contraception. These extended cycles aim at obtaining prolonged amenorrhea, interrupted periodically by a free interval of 7 days without hormone intake and thus causing breakthrough bleeding. Pathologies, which are supposed to get some benefit from the suppression of menstruation and of hormone level variations related to ovarian activity, are widely recognized as an indication. Some interest is also coming up for so called life style indications. Treatment issues, advantages and disadvantages are examined in the light of women's expectations and right to access to informed consent and independent choice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have developed a thrombin-sensitive polymeric photosensitizer prodrug (T-PS) to selectively image and eradicate inflammatory lesions in rheumatoid arthritis (RA). Thrombin is a serine protease up-regulated in synovial tissues of rheumatoid arthritis (RA) patients. T-PS consists of a polymeric backbone, to which multiple photosensitizer (PS) units are tethered via short thrombin-cleavable peptide linkers. Fluorescence emission and phototoxicity of the prodrug are efficiently quenched due to the interaction of neighboring photosensitizer units. The prodrug is passively delivered to the inflammation site via the enhanced permeability and retention (EPR) effect. Subsequent site-selective proteolytic cleavage of the peptide linkers restores its photoactivity by increasing the mutual distance between PS. Whole animal imaging in murine collagen-induced arthritis, an experimental model of RA revealed a dose-dependent fluorescence increase in arthritic paws after systemic prodrug injection. In addition, administration of T-PS resulted in much higher fluorescence selectivity for arthritic joints as compared to the free PS. Irradiation of the arthritic joints induced light dose dependent phototoxic effects such as apoptosis, vascular damage and local hemorrhage. Long-term observations showed complete regression of the latter. Irradiated non-arthritic tissues or non-irradiated arthritic tissues showed no histological effects after photodynamic therapy with T-PS. This illustrates that T-PS can localize inflammatory lesions with excellent selectivity and induce apoptosis and vascular shut down after irradiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antisense oligonucleotides (ODNs) specific for VEGFR-2-(17 MER) and inhibiting HUVEC proliferation in-vitro were screened. One efficient sequence was selected and incorporated in different types of nanoemulsions the potential toxicity of which was evaluated on HUVEC and ARPE19 cells. Our results showed that below 10 microl/ml, a 2.5% mid-chain triglycerides cationic DOTAP nanoemulsion was non-toxic on HUVEC and retinal cells. This formulation was therefore chosen for further experiments. In-vitro transfection of FITC ODNs in ARPE cells using DOTAP nanoemulsions showed that nanodroplets do penetrate into the cells. Furthermore, ODNs are released from the nanoemulsion after 48 h and accumulate into the cell nuclei. In both ex-vivo and in-vivo ODN stability experiments in rabbit vitreous, it was noted that the nanoemulsion protected at least partially the ODN from degradation over 72 h. The kinetic results of fluorescent ODN (Hex) distribution in DOTAP nanoemulsion following intravitreal injection in the rat showed that the nanoemulsion penetrates all retinal cells. Pharmacokinetic and ocular tissue distribution of radioactive ODN following intravitreal injection in rabbits showed that the DOTAP nanoemulsion apparently enhanced the intraretinal penetration of the ODNs up to the inner nuclear layer (INL) and might yield potential therapeutic levels of ODN in the retina over 72 h post injection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cyclosporine A is a poorly water-soluble, immunosuppressive drug used to treat a variety of ocular diseases. Its limited solubility makes challenging the development of a cyclosporine A-based eye drop for ocular topical application. Based on the prodrug strategy, the practically insoluble cyclosporine A was converted into a freely soluble prodrug. Such a water-soluble prodrug made it possible to develop water-based concentrated eye drops. The prodrug formulations were tested for their ex vivo permeation and in vivo distribution at three concentrations (equivalent to 0.05%, 0.50% and 2.00% w/v cyclosporine A). The ex vivo permeation experiments were performed on corneal and conjunctival epithelia. The in vivo distribution evaluated the total cyclosporine A present in the ocular structures as well as in serum, spleen and cervical lymphatic ganglions. Each prodrug formulation was compared to conventionally used cyclosporine A eye drops at an equivalent concentration. The experimental results showed that the tested eye drops behaved differently. The prodrug formulation was characterized by the following: i) preferential conjunctival penetration, ii) an interesting capacity to create large tissue deposits and iii) a lower risk of systemic complications and immunosuppression. The prodrug aqueous eye drop was demonstrated to be a patient-friendly option for the treatment of ocular diseases requiring high ocular levels of cyclosporine A, pushing the boundaries of the current therapeutic arsenal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Powerful volatile regulators of gene expression, pheromones and other airborne signals are of great interest in biology. Plants are masters of volatile production and release, not just from flowers and fruits, but also from vegetative tissues. The controlled release of bouquets of volatiles from leaves during attack by herbivores helps plants to deter herbivores or attract their predators, but volatiles have other roles in development and in the control of defence gene expression. Some of these roles may include long-distance signalling within and perhaps between plants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The benefit of polymeric immuno-nanoparticles (NPs-Tx-HER), consisting of paclitaxel (Tx)-loaded nanoparticles coated with anti-HER2 monoclonal antibodies (Herceptin, trastuzumab), in cancer treatment was assessed in a disseminated xenograft ovarian cancer model induced by intraperitoneal inoculation of SKOV-3 cells overexpressing HER2 antigens. The study was focused on the evaluation of therapeutic efficacy and biodistribution of NPs-Tx-HER compared to other Tx formulations. The therapeutic efficacy was determined by two methods: bioluminescence imaging and survival rate. The treatment regimen consisted in an initial dose of 20mg/kg Tx administered as 10mg/kg intravenously (IV) and 10mg/kg intraperitonealy (IP), followed by five alternative IP and IV injections of 10mg/kg Tx every 3 days. The bioluminescence study has clearly shown the superior anti-tumor activity of NPs-Tx-HER compared to free Tx. As a confirmation of these results, a significantly longer survival of mice was observed for NPs-Tx-HER treatment compared to free Tx, Tx-loaded nanoparticles coated with an irrelevant mAb (Mabthera, rituximab) or Herceptin alone, indicating the potential of immuno-nanoparticles in cancer treatment. The biodistribution pattern of Tx was assessed on healthy and tumor bearing mice after IV or IP administration. An equivalent biodistribution profile was observed in healthy mice for Tx encapsulated either in uncoated nanoparticles (NPs-Tx) or in NPs-Tx-HER. No significant difference in Tx biodistribution was observed after IV or IP injection, except for a lower accumulation in the lungs when NPs were administered by IP. Encapsulated Tx accumulated in the organs of the reticulo-endothelial system (RES) such as the liver and spleen, whereas free Tx had a non-specific distribution in all tested organs. Compared to free Tx, the single dose injection (IV or IP) of encapsulated Tx in mice bearing tumors induced a higher tumor accumulation. However, no difference in overall tumor accumulation between NPs-Tx-HER and NPs-Tx was observed. In conclusion, the encapsulation of Tx into NPs-Tx-HER immuno-nanoparticles resulted in an improved efficacy of drug in the treatment of disseminated ovarian cancer overexpressing HER2 receptors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Paclitaxel (Tx)-loaded anti-HER2 immunonanoparticles (NPs-Tx-HER) were prepared by the covalent coupling of humanized monoclonal anti-HER2 antibodies (trastuzumab, Herceptin) to Tx-loaded poly (dl-lactic acid) nanoparticles (NPs-Tx) for the active targeting of tumor cells that overexpress HER2 receptors. The physico-chemical properties of NPs-Tx-HER were compared to unloaded immunonanoparticles (NPs-HER) to assess the influence of the drug on anti-HER2 coupling to the NP surface. The immunoreactivity of sulfo-MBS activated anti-HER2 mAbs and the in vitro efficacy of NPs-Tx-HER were tested on SKOV-3 ovarian cancer cells that overexpress HER2 antigens. Tx-loaded nanoparticles (NPs-Tx) obtained by a salting-out method had a size of 171+/-22 nm (P.I.=0.1) and an encapsulation efficiency of about of 78+/-10%, which corresponded to a drug loading of 7.8+/-0.8% (w/w). NPs-Tx were then thiolated and conjugated to activated anti-HER2 mAbs to obtain immunonanoparticles of 237+/-43 nm (P.I.=0.2). The influence of the activation step on the immunoreactivity of the mAbs was tested on SKOV-3 cells using 125I-radiolabeled mAbs, and the activity of the anti-HER2 mAbs was minimally affected after sulfo-MBS functionalization. Approximately 270 molecules of anti-HER2 mAbs were bound per nanoparticle. NPs-Tx-HER exhibited a zeta potential of 0.2+/-0.1 mV. The physico-chemical properties of the Tx-loaded immunonanoparticles were very similar to unloaded immunonanoparticles, suggesting that the encapsulation of the drug did not influence the coupling of the mAbs to the NPs. No drug loss was observed during the preparation process. DSC analysis showed that encapsulated Tx is in an amorphous or disordered-crystalline phase. These results suggest that Tx is entrapped in the polymeric matrix and not adsorbed to the surface of the NPs. In vitro studies on SKOV-3 ovarian cancer cells demonstrated the greater cytotoxic effect of NPs-Tx-HER compared to other Tx formulations. The results showed that at 1 ng Tx/ml, the viability of cells incubated with drug encapsulated in NP-Tx-HER was lower (77.32+/-5.48%) than the viability of cells incubated in NPs-Tx (97.4+/-12%), immunonanoparticles coated with Mabthera, as irrelevant mAb (NPs-Tx-RIT) (93.8+/-12%) or free drug (92.3+/-9.3%).