35 resultados para Continental rift

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

P>To put constraints on the Mesozoic to recent growth of the Anti-Atlas system, we investigated the temperature-time history of rocks by applying extensive low-temperature thermochronological analysis to three Precambrian inliers along the coast and 250 km into the interior. Bedrocks yield old U-Th/He ages on zircon (248-193 Ma) and apatite (150-50 Ma) and also fission-track ages of 173-121 Ma on apatite. These datasets are interpreted as recording passive margin upward movements from central Atlantic rifting until the Early Cretaceous. A phase of sedimentary burial was evidenced for the Cretaceous-Eocene. The extension of this thin (1.5 km) basin is loosely constrained but can be extended to the western regions of northern Africa. Effects of the existing thermal perturbation of lithospheric origin 100 km below the Atlas show that the 120-60 degrees C isotherms are not much deflected. Large-scale uplift has possibly occurred in the western Anti-Atlas since c. 30 Ma and is associated with a mean denudation rate of 0.08 km Ma-1.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

New plate-tectonic reconstructions of the Gondwana margin suggest that the location of Gondwana-derived terranes should not only be guided by the models, but should also consider the possible detrital input from some Asian blocks (Hunia), supposed to have been located along the Cambrian Gondwana margin, and accreted in the Silurian to the North-Chinese block. Consequently, the Gondwana margin has to be subdivided into a more western domain, where the future Avalonian blocks will be separated from Gondwana by the opening Rheic Ocean, whereas in its eastern continuation, hosting the future basement areas of Central Europe, different periods of crustal extension should be distinguished. Instead of applying a rather cylindrical model, it is supposed that crustal extension follows a much more complex pattern, where local back-arcs or intra-continental rifts are involved. Guided by the age data of magmatic rocks and the pattern of subsidence curves, the following extensional events can be distinguished: During the early to middle Cambrian, a back-arc setting guided the evolution at the Gondwana margin. Contemporaneous intra-continental rift basins developed at other places related to a general post-PanAfrican extensional phase affecting Africa Upper Cambrian formation of oceanic crust is manifested in the Chamrousse area, and may have lateral cryptic relics preserved in other places. This is regarded as the oceanisation of some marginal basins in a context of back-arc rifting. These basins were closed in a mid-Ordovician tectonic phase, related to the subduction of buoyant material (mid-ocean ridge?) Since the Early Ordovician, a new phase of extension is observed, accompanied by a large-scale volcanic activity, erosion of the rift shoulders generated detritus (Armorican Quartzite) and the rift basins collected detrital zircons from a wide hinterland. This phase heralded the opening of Palaeotethys, but it failed due to the Silurian collision (Eo-Variscan phase) of an intra-oceanic arc with the Gondwana margin. During this time period, at the eastern wing of the Gondwana margin begins the drift of the future Hunia microcontinents, through the opening of an eastern prolongation of the already existing Rheic Ocean. The passive margin of the remaining Gondwana was composed of the Galatian superterranes, constituents of the future Variscan basement areas. Remaining under the influence of crustal extension, they will start their drift to Laurussia since the earliest Devonian during the opening of the Palaeotethys Ocean. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The detailed geological mapping and structural study of a complete transect across the northwestern Himalaya allow to describe the tectonic evolution of the north Indian continental margin during the Tethys ocean opening and the Himalayan Orogeny. The Late Paleozoic Tethys rifting is associated with several tectonomagmatic events. In Upper Lahul and SE Zanskar, this extensional phase is recorded by Lower Carboniferous synsedimentary transtensional faults, a Lower Permian stratigraphic unconformity, a Lower Permian granitic intrusion and middle Permian basaltic extrusions (Panjal Traps). In eastern Ladakh, a Permian listric normal fault is also related to this phase. The scarcity of synsedimentary faults and the gradual increase of the Permian syn-rift sediment thickness towards the NE suggest a flexural type margin. The collision of India and Asia is characterized by a succession of contrasting orogenic phases. South of the Suture Zone, the initiation of the SW vergent Nyimaling-Tsarap Nappe corresponds to an early phase of continental underthrusting. To the S, in Lahul, an opposite underthrusting within the Indian plate is recorded by the NE vergent Tandi Syncline. This structure is associated with the newly defined Shikar Beh Nappe, now partly eroded, which is responsible for the high grade (amphibolite facies) regional metamorphism of South Lahul. The main thrusting of the Nyimaling-Tsarap Nappe followed the formation of the Shikar Beh Nappe. The Nyimaling-Tsarap Nappe developed by ductile shear of the upper part of the subducted Indian continental margin and is responsible for the progressive regional metamorphism of SE Zanskar, reaching amphibolite facies below the frontal part of the nappe, near Sarchu. In Upper Lahul, the frontal parts of the Nyimaling-Tsarap and Shikar Beh nappes are separated by a zone of low grade metamorphic rocks (pumpellyite-actinolite facies to lower greenschist facies). At high structural level, the Nyimaling-Tsarap Nappe is characterized by imbricate structures, which grade into a large ductile shear zone with depth. The related crustal shortening is about 87 km. The root zone and the frontal part of this nappe have been subsequently affected by two zones of dextral transpression and underthrusting: the Nyimaling Shear Zone and the Sarchu Shear Zone. These shear zones are interpreted as consequences of the counterclockwise rotation of the continental underthrusting direction of India relative to Asia, which occurred some 45 and 36 Ma ago, according to plate tectonic models. Later, a phase of NE vergent `'backfolding'' developed on these two zones of dextral transpression, creating isoclinal folds in SE Zanskar and more open folds in the Nyimaling Dome and in the Indus Molasse sediments. During a late stage of the Himalayan Orogeny, the frontal part of the Nyimaling-Tsarap Nappe underwent an extension of about 15 km. This phase is represented by two types of structures, responsible for the tectonic unroofing of the amphibolite facies rocks of the Sarchu area: the Sarchu high angle Normal Fault, cutting a first set of low angle normal faults, which have been created by reactivation of older thrust planes related to the Nyimaling-Tsarap Nappe.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accreted terranes, comprising a wide variety of Late Jurassic and Early Cretaceous igneous and sedimentary rocks are an important feature of Cuban geology. Their characterization is helpful for understanding Caribbean paleogeography. The Guaniguanico terrane (western Cuba) is formed by upper Jurassic platform sediments intruded by microgranular dolerite dykes. The geochemical characteristics of the dolerite whole rock samples and their minerals (augitic clinopyroxene, labradorite and andesine) are consistent with a tholeiitic affinity. Major and trace element concentrations as well as Nd, Sr and Pb isotopes show that these rocks also have a continental affinity. Sample chemistry indicates that these lavas are similar to a low Ti-P2O5 (LTi) variety of continental flood basalts (CFB) similar to the dolerites of Ferrar (Tasmania). They derived from mixing of a lithospheric mantle Source and an asthenopheric component similar to E-MORB with minor markers of crustal contamination and sediment assimilation. However, the small quantity of Cuban magmatic rocks, similarly to Tasmania, Antarctica and Siberia differs from other volumetrically important CFB occurrences Such as Parana and Deccan. These dolerites are dated as 165-150 Ma and were emplaced during the separation of the Yucatan block from South America. They could in fact be part of the Yucatan-South America margin through which the intrusive system was emplaced and which was later accreted to the Cretaceous arc of central Cuba and to the Palaeogene arc of eastern Cuba. These samples could therefore reflect the pre-rift stage between North and South America and the opening of the gulf of Mexico.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A geogenic origin has been proposed in the aetiology of non-filarial elephantiasis of the feet and legs, recently renamed podoconiosis. Soil collected in an area of the Ethiopian Rift Valley, the borough of Ocholo, known for its high prevalence of podoconiosis (5.06%), has been submitted to mineral analysis. High values of sulphur (S), cerium (Ce), lanthanum (La) and neodymium (Nd), typical for basaltic bedrocks, were found. Of special interest were the values for zirconium (Zr) and beryllium (Be), 618 +/- 87 ppm and 4.6 +/- 0.5 ppm respectively, twice as high as those recorded for soils sampled in neighbouring areas where the prevalence of podoconiosis is low. To be noted also, a high content in vanadium, above 250 ppm, in half of the soil samples collected in this region. Year-long exposure of unprotected feet to Zr and Be, known for their ability to induce granuloma formation in the lymphoid tissue of man, and present in a clay rich in colloidal silica particle, highly abrasive to skin, is doubtlessly a factor involved in the development of lymph node sclerosis leading to elephantiasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High Precision U-Pb zircon and monazite dating in the Aiguilles Rouges-Mont Blanc area allowed discrimination of three short-lived bimodal magmatic pulses: the early 332 Ma Mg-K Pormenaz monzonite and associated 331 Ma peraluminous Montees Pelissier monzogranite; the 307 Ma cordierite-bearing peraluminous Vallorcine and Fully intrusions; and the 303 Fe-K Mont Blanc syenogranite. All intruded syntectonically along major-scale transcurrent faults at a time when the substratum was experiencing tectonic exhumation, active erosion recorded in detrital basins and isothermal decompression melting dated at 327-320 Ma. Mantle activity and magma mixing are evidenced in all plutons by coeval mafic enclaves, stocks and synplutonic dykes. Both crustal and mantle sources evolve through time, pointing to an increasingly warm continental crust and juvenile asthenospheric mantle sources. This overall tectono-magmatic evolution is interpreted in a scenario of post-collisional restoration to normal size of a thickened continental lithosphere. The latter re-equilibrates through delamination and/or erosion of its mantle root and tectonic exhumation/erosion in an overall extensional regime. Extension is related to either gravitational collapse or back-are extension of a distant subduction zone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eustatic sea level changes during Pleistocene climatic fluctuations produced several cycles of connection-isolation among continental islands of the Sunda shelf. To explore the potential effects of these fluctuations, we reconstructed a model of the vicariant events that separated these islands, based on bathymetric information. Among many possible scenarios, two opposite phylogenetic patterns of evolution were predicted for terrestrial organisms living in this region: one is based on the classical allopatric speciation mode of evolution, while the other is the outcome of a sequential dispersal colonization of the archipelago. We tested the applicability of these predictions with an analysis of sequence variation of the cytochrome b gene from several taxa of Hylomys. They were sampled throughout SE-Asia and the Sunda islands. High levels of haplotype differentiation characterize the different island taxa. Such levels of differentiation support the existence of several allopatric species, as was suggested by previous allozyme and morphological data. Also in accordance with previous results, the occurrence of two sympatric species from Sumatra is suggested by their strongly divergent haplotypes. One species, Hylomys suillus maxi, is found both on Sumatra and in Peninsular Malaysia, while the other, H. parvus, is endemic to Sumatra. Its closest relative is H. suillus dorsalis from Borneo. Phylogenetic reconstructions also demonstrate the existence of a Sundaic clade composed of all island taxa, as opposed to those from the continent. Although there is no statistical support for either proposed biogeographic model of evolution, we argue that the sequential dispersal scenario is more appropriate to describe the genetic variation found among the Hylomys taxa. However, despite strong differentiation among island haplotypes, the cladistic relationships between some island taxa could not be resolved. We argue that this is evidence of a rapid radiation, suggesting that the separation of the islands may have been perceived as a simultaneous event rather than as a succession of vicariant events. Furthermore, the estimates of divergence times between the haplotypes of these taxa suggest that this radiation may actually have predated the climatic fluctuations of the Pleistocene. Further refinement of the initial palaeogeographic models of evolution are therefore needed to account for these results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The lithostratigraphic description of the covers of three Lower Penninic nappes (Monte Leone, Lebendun and Antigorio) allows the comparison of their sedimentary content and their thickness. It has been established that the Lebendun nappe is formed by an ante-Triassic paragneissic core (Valgrande gneiss), and a Mesozoic sedimentary cover in reversed position. The cover series shows a continuous detritic sedimentation, off which the material comes from a continental erosion related to the early Lias rifting phase of the Alpine Tethys. The erosion has reached the basement, resedimented as pebbles and sandstones. This can be observed in both Lebendun and Antigorio covers. The definition of a unit named <<serie intermediaire>> between the Lebendun and the Antigorio covers has important palinspastic implications for both nappes. The unit is composed of a banded marble, a garnet bearing gneiss and a calcschist with great blocks. The comparison between the thickness of Antigorio and Lebendun covers suggests a shoulder position for Antigorio. and a proximal rift basin position tor Lebendun. The general thickness decrease of the series towards the SW points to a NE origin for the Lebendun clastics, taking into account the increase of tectonic deformation in the region trending from east to west. The detritic sedimentation ends with the basin drowning during the Malm, represented by a pure marble sealing the erosive disconformity of the Antigorio cover, and the clastic deposits of Lebendun. Three hypotheses are proposed for the calcschists age and attribution of the <<serie intermediaire>>: A: they belong entirely or partially to the Lebendun cover and correspond to a conglomeratic deposit of Cretaceous-Tertiary Niesen flysch type, of proximal facies. The tectonic limit could be situated in the middle of the calcschists at the level of the huge blocks encountered. B: they belong to Antigorio and correspond to an upper Lias-Dogger synrift deposit, then the marble is liassic. C: they belong to Antigorio and have been deposited following the Lebendun basin inversion (Cretaceous-Tertiary). that generates Tertiary wildflysch deposits, coming from the South for the ultrahelvetic and from the North for the Niesen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Early Cretaceous life and the environment were strongly influenced by the accelerated break up of Pangaea, which was associated with the formation of a multitude of rift basins, intensified spreading, and important volcanic activity on land and in the sea. These processes likely interacted with greenhouse conditions, and Early Cretaceous climate oscillated between "normal" greenhouse, predominantly arid conditions, and intensified greenhouse, predominantly humid conditions. Arid conditions were important during the latest Jurassic and early Berriasian, the late Barremian, and partly also during the late Aptian. Humid conditions were particularly intense and widespread during shorter episodes of environmental change (EECs): the Valanginian Weissert, the latest Hauterivian Faraoni, the latest Barremian earliest Aptian Taxy, the early Aptian Selli, the early late Aptian Fallot and the late Aptian-early Albian Paquier episodes. Arid conditions were associated with evaporation, low biogeochemical weathering rates, low nutrient fluxes, and partly stratified oceans, leading to oxygen depletion and enhanced preservation of laminated, organic-rich mud (LOM). Humid conditions enabled elevated biogeochemical weathering rates and nutrient fluxes, important runoff and the buildup of freshwater lids in proximal basins, intensified oceanic and atmospheric circulation, widespread upwelling and phosphogenesis, important primary productivity and enhanced preservation of LOM in expanded oxygen-minimum zones. The transition of arid to humid climates may have been associated with the net transfer of water to the continent owing to the infill of dried-out groundwater reservoirs in internally drained inland basins. This resulted in shorter-term sea-level fall, which was followed by sea-level rise. These sea-level changes and the influx of freshwater into the ocean may have influenced oxygen-isotope signatures. Climate change preceding and during the Early Cretaceous EECs may have been rapid, but in general, the EECs had a "pre"-history, during which the stage was set for environmental change. Negative feedback on the climate through increased marine LOM preservation was unlikely, because of the low overall organic-carbon accumulation rates during these episodes. Life and climate co-evolved during the Early Cretaceous. Arid conditions may have affected continental life, such as across the Tithonian/Berriasian boundary. Humid conditions and the corresponding tendency to develop dys- to anaerobic conditions in deeper ocean waters led to phases of accelerated extinction in oceans, but may have led to more luxuriant vegetation cover on continents, such as during the Valanginian, to the benefit of herbivores. During Early Cretaceous EECs, reef systems and carbonate platforms in general were particularly vulnerable. They were the first to disappear and the last to recover, often only after several million years. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study analyses the stratigraphy, structure and kinematics of the northern part of the Adula nappe of the Central Alps. The Adula nappe is one of the highest basement nappes in the Lower Penninic nappe stack of the Lepontine Dome. This structural position makes possible the investigation of the transition between the Helvetic and North Penninic paleogeographic domains. The Adula nappe is principally composed of crystalline basement rocks. The investigation of the pre-Triassic basement shows that it contains several Palaeozoic detrital metasedimentary formations dated from the Cambrian to the Ordovician. These formations contain also some volcanic or intrusive magmatic rocks. Ordovician metagranites dated at ~450 Ma are also a common rock-type of the Adula basement. These formations underwent Alpine and Variscan deformation and metamorphism. Permian granites (Zervreila orthogneiss, dated at ~290 Ma) have intruded this pre-structured basement in a post-orogenic geodynamic context. Due to their age, the Zervreila orthogneiss are good markers for alpine deformation. The stratigraphy of the Mesozoic and Paleogene sedimentary cover of the Adula nappe is essential to unraveling its pre- orogenic history. The autochthonous cover is assigned to a North Penninic Triassic series that testifies for a transition between the Helvetic and Briançonnais Triassic domains. The Adula domain goes through an emersion during the Middle Jurassic, and is part of a topographic high during the first phase of the Alpine rift. The sediments of the late Middle Jurassic show a drowning phase associated with a tectonic activity and a breccia formation. In the neighbouring domains, coeval with the drowning phase in the Adula domain, a strong extensional crustal delamination and a scattered magmatic activity is associated with the main opening of the North Penninic domain. The Upper Jurassic of the Adula nappe is characterized by a carbonate formation comparable with those in the Helvetic or Subbriaçonnais domains. Flysch s.l. deposition starts probably at the end of the Cretaceous. These sediments are deposited on a large unconformity testifying for a Cretaceous sedimentary gap. The Adula nappe exhibits a very complex structure. This structure is formed by several deformation phases. Two ductile deformations are responsible for the nappe emplacement. The first deformation phase is associated with a folding compatible with a top-to-south movement at the top of the nappe. The second phase is dominant and pervasive throughout the whole nappe. It goes with a strong north vergent folding and the main nappe emplacement. These two phases cause the exhumation and emplacement of a coherent, although pre-structured, piece of continental crust. Two further deformation phases postdate the nappe emplacement. - Ce travail concerne l'étude géologique de la partie nord de la nappe de l'Adula dans les Alpes centrales. La nappe de l'Adula est l'une des nappes cristallines la plus élevée dans la pile des nappes du Pennique inférieur des Alpes lepontines. Cette position particulière permet d'étudier la transition entre les nappes des domaines helvétique et pennique inférieur. La nappe de l'Adula est principalement composée de socle cristallin : l'étude de l'histoire géologique du socle est donc l'un des thèmes de cette recherche. Ce socle contient plusieurs formations métasédimentaires paléozoïques du Cambrien à I'Ordovicien. Ces métasédiments sont issus de formations clastiques comprenant souvent des roches magmatiques volcaniques et intrusives. Ces métasédiments ont subi les cycles orogéniques varisque et alpin. La nappe de l'Adula contient plusieurs corps magmatiques granitiques métamorphisés. Les premiers métagranites sont Ordovicien et témoignent d'un environnement de marge active. Ces granites sont aussi polymétamorphiques. Les deuxièmes métagranites sont représentés par les orthogneiss de type Zervreila. Ce métagranite est d'âge permien (-290 Ma). Il est mis en place dans un contexte tectonique post-orogénique. Ce granite est un maqueur de la déformation alpine car il n'est pas affecté par les orogenèses précédentes, flippy Le contenu stratigraphique des roches mésozoïques et cénozoiques de la couverture sédimentaire de la nappe de l'Adula est'important pour en étudier son histoire pré-alpine. La couverture autochtone est composée d'une série d'âge triasique d'affinité nord-pennique, un faciès qui marque la transition entre les domaines helvétiques et briançonnais au Trias. Le domaine paléogéographique représenté dans la nappe de l'Adula connaît une émersion pendant le Jurassique moyen. Cette émersion marque le commencement du rift dans le domaine alpin. La sédimentation de la fin du Jurassique moyen est marquée par une transgression marine accompagnée par des mouvements tectoniques et la formation d'une brèche. Cette transgression est contemporaine des importants mouvements tectoniques et des manifestations magmatiques dans les unités voisines qui marquent la phase principale d'ouverture du bassin nord-pennique. Le Jurassique supérieur est caractérisé par l'instauration d'une sédimentation carbonatée comparable à celle du domaine helvétique ou subbriançonnais. Une sédimentation flyschoïde, probablement du Crétacé à Tertiaire, est déposée sur une importante discordance qui témoigne d'une lacune au Crétacé. La structure complexe de la nappe de l'Adula témoigne de nombreuses phases de déformation. Ces phases de déformation sont en partie issues de la mise en place de la nappe et de déformations plus tardives. La mise en place de la nappe produit deux phases de déformation ductile : la première produit un plissement compatible avec un cisaillement top-vers-le sud dans la partie supérieure de la nappe; la deuxième produit un intense plissement qui accompagne la mise en place de la nappe vers le nord. Ces deux phases de déformation témoignent d'un mécanisme d'exhumation par déformation ductile d'un bloc cohérent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumé Le « terrane » d'Anarak-Jandak occupe une position géologique clé au nord-ouest du Microcontinent Centre-East Iranien (CE1M), connecté avec le Bloc du Grand Kavir et la ceinture métamorphique de Sanandaj-Sirjan. Nous discutons ici l'origine de ces différentes unités, reliées jusqu'à présent à des épisodes orogéniques d'âge Précambrien à Paléozoïque inférieur, pour conclure finalement de leur affinité paléotéthysienne. Leur histoire commence par un épisode de rifting d'âge Ordovicien supérieur-Dévonien inférieur, pour se terminer au Trias par la collision des blocs Cimmériens dérivé du Gondwana avec le Bloc du Turan d'affinité asiatique (événement Eocimmérien). La plus importante unité métamorphique affleurant au sud-ouest de la région de Jandak-Anarak-Kaboudan est une épaisse séquence silicoclastique à grains fins contenant des blocs ophiolitiques (marginal-sea-type), et des associations basalte-gabbro à signatures géochimiques de type supra-subduction. Dans la région de Nakhlak, nous avons daté ces gabbros par la méthode U-Pb à 387f0.11 Ma ; les roches métamorphiques pélitiques ont donné des âges de refroidissement Ar-Ar pour la muscovite de 320 à 333 Ma. Ce complexe d'accrétion "varisque" a été métamorphisé dans le faciès schiste vert-amphibolite au cours de l'accrétion de la ceinture granitique d'Airekan, d'âge Cambrien inférieur (549±15 Ma par la méthode U/Pb), qui affleure aujourd'hui à l'extrémité nord-ouest du terrane d'Anarak-Jandak . La subduction vers le nord de l'océan Paléotéthys depuis le Paléazoïque supérieur jusqu'au Trias, a permis l'accumulation de grandes quantités de matériel océanique dans la zone de subduction. Par exemple, une succession de guyots (Anarak, Kaboudan, et Meraji Seamounts) et de hauts sous-marins, entrés en collision oblique avec le prisme d'accrétion, est à l'origine d'un léger métamorphisme de type HP qui affecte ces séries {âges Ar-Ar de 280 à 230 Ma). De plus, le magmatisme bimodal de Chah Gorbeh est caractérisé d'une part par des roches de type trondjémite-gabbros (262 Ma), d'autre part par des laves en coussin de type basaltes alcalins-rhyolites; ces roches magmatiques ont recoupé l'ophiolite d'Anarak lors de la mise en place de cette dernière dans la fosse interne de subduction. Quant au prisme d'accrétion de Doshakh, d'âge essentiellement Permien supérieur, i1 a été accrété le long de la marge continentale et métamorphisé dans le faciès schiste vert. La fermeture de la Paléotéthys s'enregistre finalement par la sédimentation dans le bassin d'avant pays du flysch de Bayazeh, d'âge probable Triasique. Le matériel issu de l'arc magmatique de la Paléotéthys est très bien préservé dans les dépôts infra-arc Dévonien supérieur-Carbonifère de Godar-e-Siah, ainsi que dans la succession d'avant-arc de Nakhlak. Pendant l'intervalle Paléozoïque supérieur-Trias, la région de Jandak a été soumise à un régime extensif de type bassin d'arrière-arc, dont un témoin pourrait être la ceinture ophiolitique d'Arusan, elle-même comparable aux écailles ophiolitiques d'Aghdarband au nord-est de l'Iran. Cet ensemble métamorphique est recoupé par des granites d'arc à collisionnel datés à 215±15 Ma. Dans la région de Yazd, témoin de la marge passive Cimmérienne, la sédimentation syn-rift Silurienne à Dévonienne inférieure a été interrompue pendant l'intervalle Trias moyen-Trias supérieur; il en a été de même pour les dépôts de plate-forme Paléozoïque supérieur. L'érosion, qui dans ce dernier cas a atteint le Permien, pourrait être liée au bombement flexural de la marge passive. La collision finale n'a pas induit de déformations trop importantes, et se caractérise par la mise en place de nappes sur la marge passive. Cet événement est scellé par des dépôts molassique du Lias. D'un point de vue régional, la zone s'étendant actuellement de la Mer Noire au Pamir a été soumise à six épisodes d'extension-compression du Jurassique inférieur (début du l'ouverture en position arrière-arc de la Néotéthys) à l'Eocène moyen. Par exemple, le terrane d'AnarakJandak, probablement situé entre le Kopeh Dagh et la plate-forme nord Afghane, s'est complètement détaché de sa patrie d'origine au début du Crétacé supérieur. Des preuves de cet événement se retrouvent dans les séries de plate-forme de Khur (préservation de séries syn-rift puis de marge passive). Les ophiolites de Nain et de Sabzevar sont de plus interprétée comme un témoin de l'existence de ce bassin d'arrière-arc. Dans l'intervalle Eocène-Oligocène, l'indentation par la plaque indienne de l'Eurasie a été contemporaine de la rotation horaire de fragments de l'ancien microcontinent Iranien et de la formation du CEIM. Cette rotation est responsable du transport du terrane d'Anarak-Jandak vers sa position actuelle en Iran Central, et de la dislocation de Terranes de moindre importance, comme le bloc de Posht-e Badam. Depuis le Miocène supérieur, et à la suite de la collision entre l'Arabie et l'Iran, le ternane d'Anarak-Jandak a subi des déformations liées à l'activité d'une zone de cisaillement dextre parallèle à la suture du Zagros, à l'arrière de l'arc magmatique d'Uromieh-Dokhtar. Résumé large public Le Microcontinent Centre-Est Iranien occupe une position géologique clé au centre de l'Iran. Les différentes unités qui le composent, reliées jusqu'à présent à des épisodes orogéniques d'âge Précambrien à Paléozoïque inférieur, sont maintenant rajeunies et liés à la fermeture de l'océean Paléotéthys. Leur histoire commence par un épisode de rifting d'âge Ordovicien supérieur à Dévonien inférieur, pour se terminer au Trias par la collision des- blocs Cimmériens, dérivés du Gondwana, avec le Bloc du Turan d'affinité asiatique. Dans la marge active asiatique de la Paléotéthys, nous avons daté les restes d'un océan marginal à 387±0.11 Ma. Ce complexe d'accrétion a été métamorphisé au cours de la réaccrétion de la ceinture granitique d'Airekan, d'âge Cambrien inférieur (549±15 Ma), qui affleure aujourd'hui à l'extrémité nord-ouest du « terrane » d'Anarak-Jandak correspondant à la plus grande partie de la région étudiée. Le matériel issu de l'arc magmatique de la Paléotéthys est très bien préservé et daté du Dévonien supérieur-Carbonifère. Pendant l'intervalle Paléozoïque supérieur-Trias, la région a été soumise à un régime extensif de type bassin d'arrière-arc, dont un témoin pourrait être la ceinture ophiolitique d'Arusan, comparable aux écailles ophiolitiques d'Aghdarband au nord-est de l'Iran. Cet ensemble métamorphique est recoupé par des granites datés à 215±15 Ma. La subduction vers le nord de l'océan Paléotéthys depuis le Paléozoïque supérieur jusqu'au Trias, a permis l'accumulation de grandes quantités de matériel océanique dans la zone de subduction. Par exemple, une succession de volcans sous-marins, entrés en collision avec le prisme d'accrétion, est à l'origine d'un léger métamorphisme de type HP qui affecte ces séries (280 à 230 Ma). Quant au prisme d'accrétion de Doshakh, d'âge essentiellement Permien supérieur, il a été mis en place le long de la marge continentale et métamorphisé dans le faciès schiste vert. La fermeture de la Paléotéthys s'enregistre finalement par la sédimentation dans le bassin d'avant pays du flysch de Bayazeh, d'âge Triasique. Dans la région de Yazd, on trouve les témoins de la marge passive Cimmérienne, la sédimentation syn-rift Silurienne à Dévonienne inférieure a été interrompue pendant l'intervalle Trias moyen-Trias supérieur, marqué par la flexuration de la marge passive lorsqu'elle rentra en collision avec la marge active asiatique. Cet événement est scellé par des dépôts molassique à charbon du Lias. Le «terrane» d'Anarak-Jandak, probablement situé à l'origine entre le Kopeh Dagh et la plate-forme nord Afghane, s'est complètement détaché de cette région au début du Crétacé supérieur lors de l'ouverture d'un bassin d'arrière-arc, engendré, cette fois, par la subduction de l'océan Néotéthys situé au sud des blocs cimmériens. Des preuves de cet événement se retrouvent dans les séries syn-rift, puis de marge passive de Khour. Les ophiolites de Nain et de Sabzevar sont interprétées comme un témoin de l'existence de ce bassin d'arrière-arc. Dans l'intervalle Eocène-Oligocène, l'indentation de l'Eurasie par la plaque indienne a été contemporaine de la rotation horaire de fragments de l'ancien microcontinent centre-Iranien. Cette rotation de près de 90° est responsable du transport du « terrane » d'Anarak-Jandak vers sa position actuelle. Abstract The Anarak-Jandaq terrane occupies a strategic geological situation at the north-western part of the Central-East Iranian Microcontinent (CEIM) and in connection with the Great Kavir Block and Sanandaj-Sirjan metamorphic belt. Our recent findings redefine the origin of these mentioned areas so far attributed to the Precambrian-Early Palaeozoic orogenic episodes, to be now directly related to the tectonic evolution of the Palaeo-Tethys Ocean, commenced by Late Ordovician-Early Devonian rifting events and terminated in the Triassic by the Eocimmerian tectonic event due to the collision of the Cimmerian blocks with the Asiatic Turan block. The most distributed metamorphic unit that is exposed from the south-west of Jandaq to the Anarak and Kaboudan areas is a thick and fine grain siliciclastic sequence accompanied by marginal-sea-basin ophiolitic blocks including basalt-gabbro association with supra-subduction-geochemical signature. These gabbros in the Nakhlak area were dated by U/Pb method at 387.6 ± 0.11 Ma and the metamorphic pelitic rocks yielded a range of 320 to 333 Ma muscovite-cooling ages based on 40Ar/39 Ar method. This "Variscan" accretionary complex was metamorphosed in greenschist-amphibolite facies during accretion to the Lower Cambrian Airekan granitic belt (549 ± 15 Ma by U/Pb method) that crops out at the northwestern edge of the Anarak-Jandaq terrane. Continued northward subduction of the Palaeo-Tethys Ocean during the entire Late Palaeozoic-Middle Triassic brought huge amount of oceanic material to the subduction zone. One chain of Carboniferous-Triassic oceanic rises and seamounts (the Anarak, Kaboudan, and Meraji Seamounts) obliquely collided with the accretionary wedge and created a mild HP metamorphic event (280-230 Ma based on 40Ar/39Ar results). Bimodal magmatism of the Chah Gorbeh area is characterized by a 262 Ma trondjemite-gabbro as well as pillow alkalibasalts-rhyolites which intruded the Anarak ophiolite when it was being emplaced within the inner-wall trench. The mainly Late Permian-Triassic Doshakh wedge was accreted along the continent and metamorphosed under lower greenschist facies and the probable Triassic Bayazeh flysch filled the foreland basin during the final closure. The Palaeo-Tethys magmatic arc products have been well preserved in the Late Devonian-Carboniferous Godar-e-Siah intra-arc deposits and the Triassic Nakhlak fore-arc succession. During the Late Palaeozoic-Triassic times, the Jandaq area has been affected by back-arc extension and probably the Arusan ophiolitic belt is the remnant of this narrow basin comparable to the Aqdarband ophiolitic remnant in north-east Iran. This metamorphic belt was intruded by 215 ± 15 Ma arc to collisional granites. In the passive margin of the Cimmerian block, on the Yazd region, the Silurian-Early Devonian syn-rift succession as well as the nearly continuous Upper Palaeozoic platform-type deposition was interrupted during the Middle to Late Triassic time, local erosion down to Devonian levels may be related to flexural bulge erosion. The collision event was not so strong to generate intensive deformation but was accompanied by some nappe thrusting onto the passive margin. It is finally unconformably covered by Liassic continental molassic deposits. Related to the onset of Neo-Tethyan back-arc opening in Early Jurassic to Mid-Eocene times, six periods of extensional-compressional events have differently influenced an elongated area, extending from the West Black Sea to Pamir. The Anarak-Jandaq terrane which was situated somewhere in this affected area, probably between the Kopeh Dagh and North Afghan platform, was completely detached from its source at the beginning of the Late Cretaceous

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract The study of fossil Tethyan continental margins implies the consideration of the oceanic domains to which they were connected. The advent of plate tectonics confirmed the importance of the detection of accretion-related mélanges. Ophiolitic mélanges are derived from both an upper ophiolitic obducting plate and a lower oceanic plate. Besides ophiolitic elements, the mélanges may incorporate parts of a magmatic arc and dismembered fragments of a passive continental margin. As the lower plate usually totally disappears during the obduction process, it can only be reconstructed from its elements found in the mélanges. Because of their key location at active margin boundaries, preserved accretion-related mélanges provide strong constraints on the geological evolution of former oceanic domains and their adjacent margins. The identification of Palaeotethyan remnants as accretionary series or reworked during the Late Triassic Eo-Cimmerian event, as well as the recognition of HugluPindos marginal sequences in southern Turkey and in the external Hellenides represent the main achievements of this work, making possible to establish new palaeogeographical correlations. The Mersin mélanges (Turkey), together with the Antalya and Mamonia (Cyprus) domains, are characterized by a series of exotic units found now south of the main Taurus range and compose the South-Taurides Exotic Units. The Mersin mélanges are subdivided in a Triassic and a Late Cretaceous unit. These units consist of the remnants of three major Tethyan oceans, the Palaeotethys, the Neotethys and the Huglu-Pindos. The definition and inventory of the Upper Antalya Nappes (Turkey) are still a matter of controversies and often conflicting interpretations. The recognition of Campanian radiolarians on top of the Kerner Gorge unit directly overlain by the Ordovician Seydi§ehir Fm. of the Tahtah Dag Nappe outlines a tectonic contact and demonstrates that the Upper Antalya Nappes system is composed of three different nappes, the Kerner Gorge, Bakirli and the Tahtah Dag nappes. Additionally, a limestone block in a doubtful tectonic position at the base of the Upper Antalya Nappes yielded for the first time two middle Viséan associations of foraminifers and problematic algae. The Tavas Nappe in the Lycian Nappes (Turkey) is classically divided into the Karadag, Teke Dere, Köycegiz and Haticeana units. As for the Mersin mélanges, the Tavas Nappe is highly composite and includes dismembered units belonging to the Palaeotethyan, Neotethyan and HugluPindos realms. The Karadag unit consists of a Gondwana-type platform succession ranging from the Late Devonian to the Late Triassic. It belongs to the Cimmerian Taurus terrane and was part of the northern passive margin of the Neotethys. The Teke Dere unit is composed of different parts of the Palaeotethyan succession including Late Carboniferous OIB-type basalts, Carboniferous MORB-type basalts, an Early Carboniferous siliciclastic series and a Middle Permian arc sequence. The microfauna and microflora identified in different horizons within the Teke Dere unit share strong biogeographical affinities with the northern Palaeotethyan borders. Kubergandian limestones in primary contact above the Early Carboniferous siliciclastics yielded a rich and diverse microfauna and microflora also identified in reworked cobbles within the Late Triassic Gevne Fm. of the Aladag unit (Turkey). The sedimentological evolution of the Köycegiz and Haticeana series is in many points similar to classical Pindos sequences. These series originated in the Huglu-Pindos Ocean along the northern passive margin of the Anatolian (Turkish transect) and Sitia-Pindos (Greek transect) terranes. Conglomerates at the base of the Lentas Unit in southern Crete (Greece) yielded a microfauna and microflora presenting also strong affinities with the northern borders of the Palaeotethys. This type of reworked sediments at the base of Pindos-like series would suggest a derivation from the Palaeotethyan active margin. -Résumé (French abstract) L'étude des marges continentales fossiles de l'espace téthysien implique d'étudier les domaines océaniques qui y étaient rattachés. Les progrès de la tectonique des plaques ont confirmé l'importance de la reconnaissance des mélanges d'accrétion. Les mélanges ophiolitiques dérivent d'une plaque supérieure ophiolitique qui obducte, et d'une plaque inférieure océanique. En plus d'éléments ophiolitiques, les mélanges peuvent aussi incorporer des parties d'un arc magmatique, ou des fragments d'une marge continentale passive. Comme la plaque inférieure disparaît généralement complètement durant le processus d'obduction, elle ne peut être reconstruite qu'au travers de ses éléments trouvés dans les mélanges. A cause de leur situation aux limites de marges actives, les mélanges d'accrétion bien préservés permettent de contraindre l'évolution géologique d'anciens océans et de leurs marges. L'identification de vestiges de la Paléotéthys en série d'accrétion ou remaniés lors de l'orogenèse éo-cimmérienne au Trias supérieur, ainsi que l'observation de séquences marginales de Huglu-Pinde en Turquie du sud et dans les Hellénides externes représentent les principaux résultats de ce travail, permettant d'établir de nouvelles corrélations paléogéographiques. Les mélanges de Mersin (Turquie), avec les domaines d'Antalya et de Mamonia (Chypre), sont caractérisés par des unités exotiques se trouvant au sud de la chaîne taurique, et forment les Unités Exotiques Sud-Tauriques. Les mélanges de Mersin sont subdivisés en une unité triasique, et une autre du Crétacé supérieur. Ces unités comprennent les reliques de trois principaux océans téthysiens, la Paléotéthys, la Néotéthys et Huglu-Pinde. L'inventaire et la définition des nappes supérieures d'Antalya (Turquie) sont encore matière à controverse et donne lieu à des interprétations conflictuelles. La découverte de radiolaires campaniens au sommet de l'unité de la Gorge de Kemer, directement recouverts par la formation ordovicienne de Seydisehir de la nappe du Tahtali Dag met en évidence un contact tectonique et démontre que les nappes supérieures sont composées de trois différentes nappes, celle de la Gorge de Kemer, celle du Bakirli et celle Tahtali Dag. De plus, un bloc de calcaire dont la position tectonique demeure incertaine à la base des nappes supérieures a fourni pour la première fois deux associations viséennes de foraminifères et d'algues problématiques. La nappe de Tavas dans les nappes lyciennes (Turquie) est séparée en unités du Karadag, du Teke Dere, de Köycegiz et d'Haticeana. Comme pour les mélanges de Mersin, la nappe de Tavas est composite et inclut des unités appartenant à la Paléotéthys, à la Néotéthys et à Huglu-Pinde. L'unité du Karadag est une plateforme carbonatée de type Gondwana se développant du Dévonien supérieur au Trias supérieur. Elle appartient au domaine cimmérien du Taurus et formait la marge nord de la Néotéthys. L'unité du Teke Dere est composée de différentes écailles paléotéthysiennes et inclut des basaltes d'île océanique du Carbonifère supérieur, des basaltes de ride océanique du Carbonifère, une série siliciclastique du Carbonifère supérieur et un arc du Permien moyen. Les microfaunes et -flores trouvées à différents niveaux de la série du Teke Dere partagent de fortes affinités paléogéographiques avec les marges nord de la Paléotéthys. Des calcaires du Kubergandien en contact primaire au-dessus de la série siliciclastique a donné de riches microfaunes et -flores, également identifiées dans des galets remaniés dans la formation de Gevne du Trias supérieur de l'Aladag. L'évolution sédimentologique des séries de Köycegiz et d'Haticeana sont très similaires aux séries classiques du Pinde. Ces séquences prennent leur racine dans l'océan de Huglu-Pinde, le long de la marge passive nord anatolienne (profil turc) et de la marge de Sitia-Pinde (profil grec). Des conglomérats à la base de l'unité de Lentas au sud de la Crète (Grèce) ont donné des microfaunes et flores partageant également de fortes similitudes avec les bordures nord de la Paléotéthys. Le type de sédiments remaniés à la base d'unités de type Pinde suggère une dérivation depuis la marge active de la Paléotéthys. -Résumé grand public (non-specialized abstract) Au début du 20ème siècle, Alfred Wegener bouleverse les croyances géologiques de l'époque et publie plusieurs articles sur la dérive ou la translation des continents. En utilisant des arguments géographiques (similarités des lignes de côte), paléontologiques (faunes et flores similaires) et climatiques (dépôts tropicaux et glaciaires), Wegener explique qu'il y a plusieurs millions d'années, les terres émergées actuelles ne devaient former qu'un seul et grand continent. La fin du 20ème siècle verra l'avènement de la théorie de la tectonique des plaques suite à la reconnaissance du cycle de Wilson, des rides médio-océaniques, des anomalies magnétiques dans les océans et des sutures océaniques qui représentent les reliques d'océans disparus. Le Cycle de Wilson se caractérise par une suite d'évènements géologiques majeurs pouvant se résumer de la manière suivante : (1) séparation d'un craton continental en deux parties, créant une limite de plaque divergente. C'est ce que l'on appelle un rift; (2) développement et croissance d'un océan entre ces deux blocs. Des roches magmatiques remontent à la surface de la terre et forment une chaîne de montagne sous-marine que l'on appelle ride médio-océanique ou dorsale. L'océan continue de se développer, et des sédiments se déposent à sa surface formant la suite ophiolitique ou trinité de Steinmann; (3) après une phase d'expansion plus ou moins longue, les conditions imposées aux limites des plaques à la surface de la terre changent, et l'océan se met à se refermer par disparition progressive (subduction) de sa croûte océanique sous une croûte continentale par exemple. Ceci crée une nouvelle limite de plaque, convergente cette fois; (4) la subduction de la plaque océanique sous la plaque continentale provoque une remontée de magma formant des chaînes volcaniques à la surface de la Terre ; (5) une fois que la plaque océanique a complètement disparu, les deux blocs préalablement séparés par l'océan font collision, formant ainsi une chaîne de montagne. Les chaînes de montagnes sont de manière générale formées par un empilement plus ou moins complexe de nappes. C'est au coeur de certaines de ces nappes que se trouvent les vestiges de l'océan disparu. Un des objectifs de ce travail était la recherche de ces vestiges dans le domaine téthysien de la Méditerranée orientale. Pour ce faire, nous avons parcourus une grande partie du sud de la Turquie, nous sommes allés à Chypre, dans le Sultanat d'Oman, en Iran, en Crète, et nous avons visités quelques îles grecques du Dodécanèse. La région de la Méditerranée orientale est une zone qui a été tectoniquement très active, et qui continue de l'être de nos jours par des phénomènes de subduction (ex. les volcans de Santorin), et par des mouvements coulissants entre des plaques continentales (ex. la faille nord-anatolienne) qui donnent régulièrement lieu à des tremblements de terre. Pour le géologue, la complexité de ces zones d'étude réside dans le fait que les chaînes de montagne actuelles ne contiennent en général pas seulement les restes d'un océan, mais bien de plusieurs bassins océaniques qui se sont succédés dans l'espace et dans le temps. Les nappes qui se trouvent au sud de la Turquie et dans le Dodécanèse forment un important jalon dans la chaîne alpine qui s'étend depuis les Alpes jusque dans l'Himalaya. L'idée d'un continuum au coeur de ce système se basait principalement sur l'âge des océans et sur la reconnaissance de similarités dans l'évolution des séries sédimentaires. La localisation des vestiges de la Paléotéthys ainsi que l'identification des séries sédimentaires ayant appartenu à l'océan de HugluPinde repris sous forme de nappes en Turquie et en Grèce sont cruciales pour permettre de bonnes corrélations locales et régionales. La reconnaissance, la compréhension et l'interprétation de ces séries sédimentaires permettront d'élaborer un modèle d'évolution géodynamique régional, s'appuyant sur des faits de terrains indiscutables, et prenant en compte les contraintes globales que ce genre d'exercice implique.