2 resultados para Consistent Covariance-matrix
em Université de Lausanne, Switzerland
Resumo:
Unraveling the effect of selection vs. drift on the evolution of quantitative traits is commonly achieved by one of two methods. Either one contrasts population differentiation estimates for genetic markers and quantitative traits (the Q(st)-F(st) contrast) or multivariate methods are used to study the covariance between sets of traits. In particular, many studies have focused on the genetic variance-covariance matrix (the G matrix). However, both drift and selection can cause changes in G. To understand their joint effects, we recently combined the two methods into a single test (accompanying article by Martin et al.), which we apply here to a network of 16 natural populations of the freshwater snail Galba truncatula. Using this new neutrality test, extended to hierarchical population structures, we studied the multivariate equivalent of the Q(st)-F(st) contrast for several life-history traits of G. truncatula. We found strong evidence of selection acting on multivariate phenotypes. Selection was homogeneous among populations within each habitat and heterogeneous between habitats. We found that the G matrices were relatively stable within each habitat, with proportionality between the among-populations (D) and the within-populations (G) covariance matrices. The effect of habitat heterogeneity is to break this proportionality because of selection for habitat-dependent optima. Individual-based simulations mimicking our empirical system confirmed that these patterns are expected under the selective regime inferred. We show that homogenizing selection can mimic some effect of drift on the G matrix (G and D almost proportional), but that incorporating information from molecular markers (multivariate Q(st)-F(st)) allows disentangling the two effects.
Resumo:
Although polychlorinated biphenyls (PCBs) have been banned in many countries for more than three decades, exposures to PCBs continue to be of concern due to their long half-lives and carcinogenic effects. In National Institute for Occupational Safety and Health studies, we are using semiquantitative plant-specific job exposure matrices (JEMs) to estimate historical PCB exposures for workers (n = 24,865) exposed to PCBs from 1938 to 1978 at three capacitor manufacturing plants. A subcohort of these workers (n = 410) employed in two of these plants had serum PCB concentrations measured at up to four times between 1976 and 1989. Our objectives were to evaluate the strength of association between an individual worker's measured serum PCB levels and the same worker's cumulative exposure estimated through 1977 with the (1) JEM and (2) duration of employment, and to calculate the explained variance the JEM provides for serum PCB levels using (3) simple linear regression. Consistent strong and statistically significant associations were observed between the cumulative exposures estimated with the JEM and serum PCB concentrations for all years. The strength of association between duration of employment and serum PCBs was good for highly chlorinated (Aroclor 1254/HPCB) but not less chlorinated (Aroclor 1242/LPCB) PCBs. In the simple regression models, cumulative occupational exposure estimated using the JEMs explained 14-24% of the variance of the Aroclor 1242/LPCB and 22-39% for Aroclor 1254/HPCB serum concentrations. We regard the cumulative exposure estimated with the JEM as a better estimate of PCB body burdens than serum concentrations quantified as Aroclor 1242/LPCB and Aroclor 1254/HPCB.