134 resultados para Conjugate Vaccine
em Université de Lausanne, Switzerland
Resumo:
State-of-the-art production technologies for conjugate vaccines are complex, multi-step processes. An alternative approach to produce glycoconjugates is based on the bacterial N-linked protein glycosylation system first described in Campylobacter jejuni. The C. jejuni N-glycosylation system has been successfully transferred into Escherichia coli, enabling in vivo production of customized recombinant glycoproteins. However, some antigenic bacterial cell surface polysaccharides, like the Vi antigen of Salmonella enterica serovar Typhi, have not been reported to be accessible to the bacterial oligosaccharyltransferase PglB, hence hamper development of novel conjugate vaccines against typhoid fever. In this report, Vi-like polysaccharide structures that can be transferred by PglB were evaluated as typhoid vaccine components. A polysaccharide fulfilling these requirements was found in Escherichia coli serovar O121. Inactivation of the E. coli O121 O antigen cluster encoded gene wbqG resulted in expression of O polysaccharides reactive with antibodies raised against the Vi antigen. The structure of the recombinantly expressed mutant O polysaccharide was elucidated using a novel HPLC and mass spectrometry based method for purified undecaprenyl pyrophosphate (Und-PP) linked glycans, and the presence of epitopes also found in the Vi antigen was confirmed. The mutant O antigen structure was transferred to acceptor proteins using the bacterial N-glycosylation system, and immunogenicity of the resulting conjugates was evaluated in mice. The conjugate-induced antibodies reacted in an enzyme-linked immunosorbent assay with E. coli O121 LPS. One animal developed a significant rise in serum immunoglobulin anti-Vi titer upon immunization.
Resumo:
BACKGROUND: To ensure vaccines safety, given the weaknesses of the national pharmacovigilance system in Cameroon, there is a need to identify effective interventions that can contribute to improving AEFI reporting. OBJECTIVE: To assess the effect of: (i) sending weekly SMS, or (ii) weekly supervisory visits on AEFI reporting rate during a meningitis immunization campaign conducted in Cameroon in 2012 using the meningitis A conjugate vaccine (MenAfriVac?). METHODS: Health facilities that met the inclusion criteria were randomly assigned to receive: (i) a weekly standardized SMS, (ii) a weekly standardized supervisory visits or (iii) no intervention. The primary outcome was the reported AEFI incidence rate from week 5 to 8 after the immunization campaign. Poisson regression model was used to estimate the effect of interventions after adjusting for health region, type of health facility, type and position of health workers as well as the cumulative number of AEFI reported from weeks 1 to 4. RESULTS: A total of 348 (77.2%) of 451 health facility were included, and 116 assigned to each of three groups. The incidence rate of reported AEFI per 100 health facility per week was 20.0 (15.9-24.1) in the SMS group, 40.2 (34.4-46.0) in supervision group and 13.6 (10.1-16.9) in the control group. Supervision led to a significant increase of AEFI reporting rate compared to SMS [adjusted RR=2.1 (1.6-2.7); p<0.001] and control [RR=2.8(2.1-3.7); p<0.001)] groups. The effect of SMS led to some increase in AEFI reporting rate compared to the control group, but the difference was not statistically significant [RR=1.4(0.8-1.6); p=0.07)]. CONCLUSION: Supervision was more effective than SMS or routine surveillance in improving AEFI reporting rate. It should be part of any AEFI surveillance system. SMS could be useful in improving AEFI reporting rates but strategies need to be found to improve its effectiveness, and thus maximize its benefits.
Resumo:
Rapport de synthèse: Enjeux de la recherche : La pneumonie communautaire chez l'enfant est un problème de santé publique considérable. Elle est responsable de 2 millions de mort par année, 70% survenant dans les pays en voie de développement. Sous nos latitudes son incidence est de 40/1000 enfants par année, ce qui représente une morbidité importante. Deux difficultés surviennent lorsqu'on cherche à diagnostiquer une pneumonie. La première est de distinguer une pneumonie bactérienne d'une virale, particulièrement chez les petits enfants où les infections virales des voies respiratoires inférieures sont fréquentes. L'OMS a définit la pneumonie selon des critères exclusivement cliniques et une étude effectuée à Lausanne en 2000 a montré que ces critères peuvent être utilisés dans nos contrées. La seconde difficulté est de définir l'agent causal de la pneumonie, ceci pour plusieurs raisons : L'aspiration endotrachéale, seul examen fiable, ne peut être obtenue de routine chez l'enfant vu son caractère invasif, la culture des secrétions nasopharyngées reflète la flore physiologique de la sphère ORL et une bactériémie n'est présente que dans moins de 10% des pneumonies. L'étiologie de la pneumonie reste souvent inconnue, et de ce fait plusieurs enfants reçoivent des antibiotiques pour une infection non bactérienne ce qui contribue au développement de résistances. L'objectif de cette étude était d'effectuer une recherche extensive de l'agent causal de la pneumonie et de déterminer quels facteurs pourraient aider le clinicien à différencier une pneumonie virale de bactérienne, en corrélant l'étiologie avec la sévérité clinique et les marqueurs de l'inflammation. Contexte de la recherche : II s'agissait d'une étude prospective, multicentrique, incluant les enfants âgés de 2 mois à 5 ans hospitalisés pour une pneumonie, selon les critères de l'OMS, dans le service de pédiatrie de Lausanne et Genève entre mars 2003 et Décembre 2005, avant l'implantation de la vaccination antipneumococcique de routine. Chaque enfant, en plus des examens usuels, bénéficiait d'une recherche étiologique extensive : Culture virale et bactérienne, PCR (Mycoplasma Pneumoniae, Chlamydia Pneumoniae, Virus Influenza A et B, RSV A et B, Rhinovirus, Parainfluenza 1-3, enterovirus, human metapneumovirus, coronavirus OC43, E229 ; et NL 63) et détection d'AG viraux dans les sécrétions nasopharyngées ; sérologies virales et bactériennes à l'entrée et 3 semaines après la sortie (AG Influenza A et B, Parainfluenza 1,2 et 3, RSV, Adenovirus, M.Pneumoniae et S.Pneumoniae). Conclusions : Un agent pathogène a été découvert chez 86% des 99 patients retenus confirmant le fait que plus la recherche étiologique est étendue plus le pourcentage d'agent causal trouvé est élevé. Une infection bactérienne a été découverte chez 53% des patients dont 45% avaient une infection à S. Pneumoniae confirmant l'importance d'une vaccination antipneumococcique de routine. La déshydratation et les marqueurs de l'inflammation tels que la C-Reactive Protein et la Procalcitonine étaient significativement plus élevés dans les pneumonies bactériennes. Aucune corrélation n'a été trouvée entre le degré de sévérité de la pneumonie et l'étiologie. L'étude a confirmé la haute prévalence d'infections virales (67%) et de co-infection (33%) dans la pneumonie de l'enfant sans que l'on connaisse le rôle réel du virus dans la pathogenèse de la pneumonie. Perspectives : d'autres études à la suite de celle-ci devraient être effectuées en incluant les patients ambulatoires afin de déterminer, avec un collectif plus large de patient, une éventuelle corrélation entre sévérité clinique et étiologie. Abstract : Community-acquired pneumonia (CAP) is a major cause of death in developing countries and of morbidity in developed countries. The objective of the study was to define the causative agents among children hospitalized for CAP defined by WHO guidelines and to correlate etiology with clinical severity and surrogate markers. Investigations included an extensive etiological workup. A potential causative agent was detected in 86% of the 99 enrolled patients, with evidence of bacterial (53%), viral (67%), and mixed (33%) infections. Streptococcus pneumoniae was accounted for in 46% of CAP. Dehydration was the only clinical sign associated with bacterial pneumonia. CRP and PCT were significantly higher in bacterial infections. Increasing the number of diagnostic tests identifies potential causes of CAP in up to 86% of children, indicating a high prevalence of viruses and frequent co-infections. The high proportion of pneumococcal infections re-emphasizes the importance of pneumococcal immunization.
Resumo:
BACKGROUND: Community-acquired pneumonia (CAP) is a serious cause of morbidity among children in developed countries. The real impact of 7-valent pneumococcal conjugate vaccine (PCV7) on pneumococcal pneumonia is difficult to assess accurately. METHODS: Children aged ≤16 years with clinical and radiological pneumonia were enrolled in a multicenter prospective study. Children aged ≤16 years admitted for a minor elective surgery was recruited as controls. Nasopharyngeal samples for PCR serotyping of S. pneumoniae were obtained in both groups. Informations on age, gender, PCV7 vaccination status, day care/school attendance, siblings, tobacco exposure were collected. RESULTS: In children with CAP (n=236), 54% of the nasopharyngeal swabs were PCR-positive for S. pneumoniae compared to 32% in controls (n=105) (p=0.003). Serotype 19A was the most common pneumococcal serotype carried in children with CAP (13%) and in controls (15%). Most common serotypes were non-vaccine types (39.4% for CAP and 47.1% for controls) and serotypes included only in PCV13 (32.3% for CAP and 23.5% for controls). There was no significant difference in vaccine serotype distribution between the two groups. In fully vaccinated children with CAP, the proportion of serotypes carried only in PCV13 was higher (51.4%) than in partially vaccinated or non vaccinated children (27.6% and 28.6% respectively, p=0.037). CONCLUSIONS: Two to 4 years following introduction of PCV7, predominant S. pneumoniae serotypes carried in children with CAP were non PCV7 serotypes, and the 6 new serotypes included in PCV13 accounted for 51.4% of carried serotypes in fully vaccinated children.
Resumo:
Community-acquired pneumonia (CAP) is a major cause of death in developing countries and of morbidity in developed countries. The objective of the study was to define the causative agents among children hospitalized for CAP defined by WHO guidelines and to correlate etiology with clinical severity and surrogate markers. Investigations included an extensive etiological workup. A potential causative agent was detected in 86% of the 99 enrolled patients, with evidence of bacterial (53%), viral (67%), and mixed (33%) infections. Streptococcus pneumoniae was accounted for in 46% of CAP. Dehydration was the only clinical sign associated with bacterial pneumonia. CRP and PCT were significantly higher in bacterial infections. Increasing the number of diagnostic tests identifies potential causes of CAP in up to 86% of children, indicating a high prevalence of viruses and frequent co-infections. The high proportion of pneumococcal infections re-emphasizes the importance of pneumococcal immunization.
Resumo:
DNA vaccination is a promising approach for inducing both humoral and cellular immune responses. The mode of plasmid DNA delivery is critical to make progress in DNA vaccination. Using human papillomavirus type 16 E7 as a model antigen, this study evaluated the effect of peptide-polymer hybrid including PEI600-Tat conjugate as a novel gene delivery system on the potency of antigen-specific immunity in mice model. At ratio of 10:50 PEI-Tat/E7DNA (w/w), both humoral and cellular immune responses were significantly enhanced as compared with E7DNA construct and induced Th1 response. Therefore, this new delivery system could have promising applications in gene therapy.
Resumo:
OBJECTIVE: Tuberculosis (TB) is highly prevalent among HIV-infected people, including those receiving combination antiretroviral therapy (cART), necessitating a well tolerated and efficacious TB vaccine for these populations. We evaluated the safety and immunogenicity of the candidate TB vaccine M72/AS01 in adults with well controlled HIV infection on cART. DESIGN: A randomized, observer-blind, controlled trial (NCT00707967). METHODS: HIV-infected adults on cART in Switzerland were randomized 3 : 1 : 1 to receive two doses, 1 month apart, of M72/AS01, AS01 or 0.9% physiological saline (N = 22, N = 8 and N = 7, respectively) and were followed up to 6 months postdose 2 (D210). Individuals with CD4⁺ cell counts below 200 cells/μl were excluded. Adverse events (AEs) including HIV-specific and laboratory safety parameters were recorded. Cell-mediated (ICS) and humoral (ELISA) responses were evaluated before vaccination, 1 month after each dose (D30, D60) and D210. RESULTS: Thirty-seven individuals [interquartile range (IQR) CD4⁺ cell counts at screening: 438-872 cells/μl; undetectable HIV-1 viremia] were enrolled; 73% of individuals reported previous BCG vaccination, 97.3% tested negative for the QuantiFERON-TB assay. For M72/AS01 recipients, no vaccine-related serious AEs or cART-regimen adjustments were recorded, and there were no clinically relevant effects on laboratory safety parameters, HIV-1 viral loads or CD4⁺ cell counts. M72/AS01 was immunogenic, inducing persistent and polyfunctional M72-specific CD4⁺ T-cell responses [medians 0.70% (IQR 0.37-1.07) at D60] and 0.42% (0.24-0.61) at D210, predominantly CD40L⁺IL-2⁺TNF-α⁺, CD40L⁺IL-2⁺ and CD40L⁺IL-2⁺TNF-α⁺IFN-γ⁺]. All M72/AS01 vaccines were seropositive for anti-M72 IgG after second vaccination until study end. CONCLUSION: M72/AS01 was clinically well tolerated and immunogenic in this population, supporting further clinical evaluation in HIV-infected individuals in TB-endemic settings.
Resumo:
PURPOSE: The Cancer Vaccine Consortium of the Cancer Research Institute (CVC-CRI) conducted a multicenter HLA-peptide multimer proficiency panel (MPP) with a group of 27 laboratories to assess the performance of the assay. EXPERIMENTAL DESIGN: Participants used commercially available HLA-peptide multimers and a well characterized common source of peripheral blood mononuclear cells (PBMC). The frequency of CD8+ T cells specific for two HLA-A2-restricted model antigens was measured by flow cytometry. The panel design allowed for participants to use their preferred staining reagents and locally established protocols for both cell labeling, data acquisition and analysis. RESULTS: We observed significant differences in both the performance characteristics of the assay and the reported frequencies of specific T cells across laboratories. These results emphasize the need to identify the critical variables important for the observed variability to allow for harmonization of the technique across institutions. CONCLUSIONS: Three key recommendations emerged that would likely reduce assay variability and thus move toward harmonizing of this assay. (1) Use of more than two colors for the staining (2) collect at least 100,000 CD8 T cells, and (3) use of a background control sample to appropriately set the analytical gates. We also provide more insight into the limitations of the assay and identified additional protocol steps that potentially impact the quality of data generated and therefore should serve as primary targets for systematic analysis in future panels. Finally, we propose initial guidelines for harmonizing assay performance which include the introduction of standard operating protocols to allow for adequate training of technical staff and auditing of test analysis procedures.
Resumo:
The recent identification and molecular characterization of tumor-associated antigens recognized by tumor-reactive CD8+ T lymphocytes has led to the development of antigen-specific immunotherapy of cancer. Among other approaches, clinical studies have been initiated to assess the in vivo immunogenicity of tumor antigen-derived peptides in cancer patients. In this study, we have analyzed the CD8+ T cell response of an ocular melanoma patient to a vaccine composed of four different tumor antigen-derived peptides administered simultaneously in incomplete Freund's adjuvant (IFA). Peptide NY-ESO-1(157-165) was remarkably immunogenic and induced a CD8+ T cell response detectable ex vivo at an early time point of the vaccination protocol. A CD8+ T cell response to the peptide analog Melan-A(26-35 A27L) was also detectable ex vivo at a later time point, whereas CD8+ T cells specific for peptide tyrosinase(368-376) were detected only after in vitro peptide stimulation. No detectable CD8+ T cell response to peptide gp100(457-466) was observed. Vaccine-induced CD8+ T cell responses declined rapidly after the initial response but increased again after further peptide injections. In addition, tumor antigen-specific CD8+ T cells were isolated from a vaccine injection site biopsy sample. Importantly, vaccine-induced CD8+ T cells specifically lysed tumor cells expressing the corresponding antigen. Together, these data demonstrate that simultaneous immunization with multiple tumor antigen-derived peptides can result in the elicitation of multiepitope-directed CD8+ T cell responses that are reactive against antigen-expressing tumors and able to infiltrate antigen-containing peripheral sites.
Resumo:
Vaccination in HIV-infected children is often less effective than in healthy children. The goal of this study was to assess vaccine responses to hepatitis A virus (HAV) in HIV-infected children. Children of the Swiss Mother and Child HIV Cohort Study (MoCHiV) were enrolled prospectively. Recommendations for initial, catch-up, and additional HAV immunizations were based upon baseline antibody concentrations and vaccine history. HAV IgG was assessed by enzyme-linked immunosorbent assay (ELISA) with a protective cutoff value defined as ≥10 mIU/ml. Eighty-seven patients were included (median age, 11 years; range, 3.4 to 21.2 years). Forty-two patients were seropositive (48.3%) for HAV. Among 45 (51.7%) seronegative patients, 36 had not received any HAV vaccine dose and were considered naïve. Vaccine responses were assessed after the first dose in 29/35 naïve patients and after the second dose in 33/39 children (25 initially naïve patients, 4 seronegative patients, and 4 seropositive patients that had already received 1 dose of vaccine). Seroconversion was 86% after 1 dose and 97% after 2 doses, with a geometric mean concentration of 962 mIU/ml after the second dose. A baseline CD4(+) T cell count below 750 cells/μl significantly reduced the post-2nd-dose response (P = 0.005). Despite a high rate of seroconversion, patients with CD4(+) T cell counts of <750/μl had lower anti-HAV antibody concentrations. This may translate into a shorter protection time. Hence, monitoring humoral immunity may be necessary to provide supplementary doses as needed.
Resumo:
The review covers the development of synthetic peptides as vaccine candidates for Plasmodium falciparum- and Plasmodium vivax-induced malaria from its beginning up to date and the concomitant progress of solid phase peptide synthesis (SPPS) that enables the production of long peptides in a routine fashion. The review also stresses the development of other complementary tools and actions in order to achieve the long sought goal of an efficacious malaria vaccine.
Resumo:
We report the case of a 22-year-old man after severe cranial trauma, who was noted to have conjugate eye deviation (CED) to the left. A magnetic resonance imaging (MRI) scan demonstrated a lesion in the left (ipsilateral) striatal-subthalamic region. The involvement of supranuclear fibres from the left frontal eye field (FEF) traveling to the right parapontine reticular formation (PPRF) could explain this clinical finding. Alternatively, involvement of deep brain nuclei, such as the striatum and the subthalamic nucleus, could be responsible for this phenomenon. This neurological presentation is unusual after severe cranial trauma.
Resumo:
Current research and development of antigens for vaccination often center on purified recombinant proteins, viral subunits, synthetic oligopeptides or oligosaccharides, most of them suffering from being poorly immunogenic and subject to degradation. Hence, they call for efficient delivery systems and potent immunostimulants, jointly denoted as adjuvants. Particulate delivery systems like emulsions, liposomes, nanoparticles and microspheres may provide protection from degradation and facilitate the co-formulation of both the antigen and the immunostimulant. Synthetic double-stranded (ds) RNA, such as polyriboinosinic acid-polyribocytidylic acid, poly(I:C), is a mimic of viral dsRNA and, as such, a promising immunostimulant candidate for vaccines directed against intracellular pathogens. Poly(I:C) signaling is primarily dependent on Toll-like receptor 3 (TLR3), and on melanoma differentiation-associated gene-5 (MDA-5), and strongly drives cell-mediated immunity and a potent type I interferon response. However, stability and toxicity issues so far prevented the clinical application of dsRNAs as they undergo rapid enzymatic degradation and bear the potential to trigger undue immune stimulation as well as autoimmune disorders. This review addresses these concerns and suggests strategies to improve the safety and efficacy of immunostimulatory dsRNA formulations. The focus is on technological means required to lower the necessary dosage of poly(I:C), to target surface-modified microspheres passively or actively to antigen-presenting cells (APCs), to control their interaction with non-professional phagocytes and to modulate the resulting cytokine secretion profile.
Resumo:
BACKGROUND: The availability of the P. falciparum genome has led to novel ways to identify potential vaccine candidates. A new approach for antigen discovery based on the bioinformatic selection of heptad repeat motifs corresponding to alpha-helical coiled coil structures yielded promising results. To elucidate the question about the relationship between the coiled coil motifs and their sequence conservation, we have assessed the extent of polymorphism in putative alpha-helical coiled coil domains in culture strains, in natural populations and in the single nucleotide polymorphism data available at PlasmoDB. METHODOLOGY/PRINCIPAL FINDINGS: 14 alpha-helical coiled coil domains were selected based on preclinical experimental evaluation. They were tested by PCR amplification and sequencing of different P. falciparum culture strains and field isolates. We found that only 3 out of 14 alpha-helical coiled coils showed point mutations and/or length polymorphisms. Based on promising immunological results 5 of these peptides were selected for further analysis. Direct sequencing of field samples from Papua New Guinea and Tanzania showed that 3 out of these 5 peptides were completely conserved. An in silico analysis of polymorphism was performed for all 166 putative alpha-helical coiled coil domains originally identified in the P. falciparum genome. We found that 82% (137/166) of these peptides were conserved, and for one peptide only the detected SNPs decreased substantially the probability score for alpha-helical coiled coil formation. More SNPs were found in arrays of almost perfect tandem repeats. In summary, the coiled coil structure prediction was rarely modified by SNPs. The analysis revealed a number of peptides with strictly conserved alpha-helical coiled coil motifs. CONCLUSION/SIGNIFICANCE: We conclude that the selection of alpha-helical coiled coil structural motifs is a valuable approach to identify potential vaccine targets showing a high degree of conservation.