9 resultados para Conceptual fields theory
em Université de Lausanne, Switzerland
Resumo:
Game theory describes and analyzes strategic interaction. It is usually distinguished between static games, which are strategic situations in which the players choose only once as well as simultaneously, and dynamic games, which are strategic situations involving sequential choices. In addition, dynamic games can be further classified according to perfect and imperfect information. Indeed, a dynamic game is said to exhibit perfect information, whenever at any point of the game every player has full informational access to all choices that have been conducted so far. However, in the case of imperfect information some players are not fully informed about some choices. Game-theoretic analysis proceeds in two steps. Firstly, games are modelled by so-called form structures which extract and formalize the significant parts of the underlying strategic interaction. The basic and most commonly used models of games are the normal form, which rather sparsely describes a game merely in terms of the players' strategy sets and utilities, and the extensive form, which models a game in a more detailed way as a tree. In fact, it is standard to formalize static games with the normal form and dynamic games with the extensive form. Secondly, solution concepts are developed to solve models of games in the sense of identifying the choices that should be taken by rational players. Indeed, the ultimate objective of the classical approach to game theory, which is of normative character, is the development of a solution concept that is capable of identifying a unique choice for every player in an arbitrary game. However, given the large variety of games, it is not at all certain whether it is possible to device a solution concept with such universal capability. Alternatively, interactive epistemology provides an epistemic approach to game theory of descriptive character. This rather recent discipline analyzes the relation between knowledge, belief and choice of game-playing agents in an epistemic framework. The description of the players' choices in a given game relative to various epistemic assumptions constitutes the fundamental problem addressed by an epistemic approach to game theory. In a general sense, the objective of interactive epistemology consists in characterizing existing game-theoretic solution concepts in terms of epistemic assumptions as well as in proposing novel solution concepts by studying the game-theoretic implications of refined or new epistemic hypotheses. Intuitively, an epistemic model of a game can be interpreted as representing the reasoning of the players. Indeed, before making a decision in a game, the players reason about the game and their respective opponents, given their knowledge and beliefs. Precisely these epistemic mental states on which players base their decisions are explicitly expressible in an epistemic framework. In this PhD thesis, we consider an epistemic approach to game theory from a foundational point of view. In Chapter 1, basic game-theoretic notions as well as Aumann's epistemic framework for games are expounded and illustrated. Also, Aumann's sufficient conditions for backward induction are presented and his conceptual views discussed. In Chapter 2, Aumann's interactive epistemology is conceptually analyzed. In Chapter 3, which is based on joint work with Conrad Heilmann, a three-stage account for dynamic games is introduced and a type-based epistemic model is extended with a notion of agent connectedness. Then, sufficient conditions for backward induction are derived. In Chapter 4, which is based on joint work with Jérémie Cabessa, a topological approach to interactive epistemology is initiated. In particular, the epistemic-topological operator limit knowledge is defined and some implications for games considered. In Chapter 5, which is based on joint work with Jérémie Cabessa and Andrés Perea, Aumann's impossibility theorem on agreeing to disagree is revisited and weakened in the sense that possible contexts are provided in which agents can indeed agree to disagree.
Resumo:
The article is intended to improve our understanding of the reasons underlying the intellectual migration of scientists from well-known cognitive domains to nascent scientific fields. To that purpose we present, first, a number of findings from the sociology of science that give different insights about this phenomenon. We then attempt to bring some of these insights together under the conceptual roof of an actor-based approach linking expected utility and diffusion theory. Intellectual migration is regarded as the rational choice of scientists who decide under uncertainty and on the base of a number of decision-making variables, which define probabilities, costs, and benefits of the migration.
Parts, places, and perspectives : a theory of spatial relations based an mereotopology and convexity
Resumo:
This thesis suggests to carry on the philosophical work begun in Casati's and Varzi's seminal book Parts and Places, by extending their general reflections on the basic formal structure of spatial representation beyond mereotopology and absolute location to the question of perspectives and perspective-dependent spatial relations. We show how, on the basis of a conceptual analysis of such notions as perspective and direction, a mereotopological theory with convexity can express perspectival spatial relations in a strictly qualitative framework. We start by introducing a particular mereotopological theory, AKGEMT, and argue that it constitutes an adequate core for a theory of spatial relations. Two features of AKGEMT are of particular importance: AKGEMT is an extensional mereotopology, implying that sameness of proper parts is a sufficient and necessary condition for identity, and it allows for (lower- dimensional) boundary elements in its domain of quantification. We then discuss an extension of AKGEMT, AKGEMTS, which results from the addition of a binary segment operator whose interpretation is that of a straight line segment between mereotopological points. Based on existing axiom systems in standard point-set topology, we propose an axiomatic characterisation of the segment operator and show that it is strong enough to sustain complex properties of a convexity predicate and a convex hull operator. We compare our segment-based characterisation of the convex hull to Cohn et al.'s axioms for the convex hull operator, arguing that our notion of convexity is significantly stronger. The discussion of AKGEMTS defines the background theory of spatial representation on which the developments in the second part of this thesis are built. The second part deals with perspectival spatial relations in two-dimensional space, i.e., such relations as those expressed by 'in front of, 'behind', 'to the left/right of, etc., and develops a qualitative formalism for perspectival relations within the framework of AKGEMTS. Two main claims are defended in part 2: That perspectival relations in two-dimensional space are four- place relations of the kind R(x, y, z, w), to be read as x is i?-related to y as z looks at w; and that these four-place structures can be satisfactorily expressed within the qualitative theory AKGEMTS. To defend these two claims, we start by arguing for a unified account of perspectival relations, thus rejecting the traditional distinction between 'relative' and 'intrinsic' perspectival relations. We present a formal theory of perspectival relations in the framework of AKGEMTS, deploying the idea that perspectival relations in two-dimensional space are four-place relations, having a locational and a perspectival part and show how this four-place structure leads to a unified framework of perspectival relations. Finally, we present a philosophical motivation to the idea that perspectival relations are four-place, cashing out the thesis that perspectives are vectorial properties and argue that vectorial properties are relations between spatial entities. Using Fine's notion of "qua objects" for an analysis of points of view, we show at last how our four-place approach to perspectival relations compares to more traditional understandings.
Resumo:
During these last decades, the notion of primary intersubjectivity has gained acceptance among developmentalists and clinicians. But a new challenge is put out to our models by recent findings on the triangular competence of the very young infant, or her capacity to simultaneously communicate with two partners at a time. This discovery raises the question of a collective form of intersubjectivity. Findings on the triangular competence of the 3- to 4-month-old interactions with father and mother in different contexts of the Lausanne trilogue play situation are reviewed and illustrated, with a view to examine whether it is based on a dyadic or triangular program and whether conditions for a threesome form of primary intersubjectivity are fulfilled. The discussion focuses on the revisions of the theory of intersubjectivity, of developmental theory, and of clinical practice these findings call for, pointing toward a three -person psychology too.
Resumo:
The theory of small-world networks as initiated by Watts and Strogatz (1998) has drawn new insights in spatial analysis as well as systems theory. The theoryâeuro?s concepts and methods are particularly relevant to geography, where spatial interaction is mainstream and where interactions can be described and studied using large numbers of exchanges or similarity matrices. Networks are organized through direct links or by indirect paths, inducing topological proximities that simultaneously involve spatial, social, cultural or organizational dimensions. Network synergies build over similarities and are fed by complementarities between or inside cities, with the two effects potentially amplifying each other according to the âeurooepreferential attachmentâeuro hypothesis that has been explored in a number of different scientific fields (Barabási, Albert 1999; Barabási A-L 2002; Newman M, Watts D, Barabà si A-L). In fact, according to Barabási and Albert (1999), the high level of hierarchy observed in âeurooescale-free networksâeuro results from âeurooepreferential attachmentâeuro, which characterizes the development of networks: new connections appear preferentially close to nodes that already have the largest number of connections because in this way, the improvement in the network accessibility of the new connection will likely be greater. However, at the same time, network regions gathering dense and numerous weak links (Granovetter, 1985) or network entities acting as bridges between several components (Burt 2005) offer a higher capacity for urban communities to benefit from opportunities and create future synergies. Several methodologies have been suggested to identify such denser and more coherent regions (also called communities or clusters) in terms of links (Watts, Strogatz 1998; Watts 1999; Barabási, Albert 1999; Barabási 2002; Auber 2003; Newman 2006). These communities not only possess a high level of dependency among their member entities but also show a low level of âeurooevulnerabilityâeuro, allowing for numerous redundancies (Burt 2000; Burt 2005). The SPANGEO project 2005âeuro"2008 (SPAtial Networks in GEOgraphy), gathering a team of geographers and computer scientists, has included empirical studies to survey concepts and measures developed in other related fields, such as physics, sociology and communication science. The relevancy and potential interpretation of weighted or non-weighted measures on edges and nodes were examined and analyzed at different scales (intra-urban, inter-urban or both). New classification and clustering schemes based on the relative local density of subgraphs were developed. The present article describes how these notions and methods contribute on a conceptual level, in terms of measures, delineations, explanatory analyses and visualization of geographical phenomena.
Resumo:
Due to the advances in sensor networks and remote sensing technologies, the acquisition and storage rates of meteorological and climatological data increases every day and ask for novel and efficient processing algorithms. A fundamental problem of data analysis and modeling is the spatial prediction of meteorological variables in complex orography, which serves among others to extended climatological analyses, for the assimilation of data into numerical weather prediction models, for preparing inputs to hydrological models and for real time monitoring and short-term forecasting of weather.In this thesis, a new framework for spatial estimation is proposed by taking advantage of a class of algorithms emerging from the statistical learning theory. Nonparametric kernel-based methods for nonlinear data classification, regression and target detection, known as support vector machines (SVM), are adapted for mapping of meteorological variables in complex orography.With the advent of high resolution digital elevation models, the field of spatial prediction met new horizons. In fact, by exploiting image processing tools along with physical heuristics, an incredible number of terrain features which account for the topographic conditions at multiple spatial scales can be extracted. Such features are highly relevant for the mapping of meteorological variables because they control a considerable part of the spatial variability of meteorological fields in the complex Alpine orography. For instance, patterns of orographic rainfall, wind speed and cold air pools are known to be correlated with particular terrain forms, e.g. convex/concave surfaces and upwind sides of mountain slopes.Kernel-based methods are employed to learn the nonlinear statistical dependence which links the multidimensional space of geographical and topographic explanatory variables to the variable of interest, that is the wind speed as measured at the weather stations or the occurrence of orographic rainfall patterns as extracted from sequences of radar images. Compared to low dimensional models integrating only the geographical coordinates, the proposed framework opens a way to regionalize meteorological variables which are multidimensional in nature and rarely show spatial auto-correlation in the original space making the use of classical geostatistics tangled.The challenges which are explored during the thesis are manifolds. First, the complexity of models is optimized to impose appropriate smoothness properties and reduce the impact of noisy measurements. Secondly, a multiple kernel extension of SVM is considered to select the multiscale features which explain most of the spatial variability of wind speed. Then, SVM target detection methods are implemented to describe the orographic conditions which cause persistent and stationary rainfall patterns. Finally, the optimal splitting of the data is studied to estimate realistic performances and confidence intervals characterizing the uncertainty of predictions.The resulting maps of average wind speeds find applications within renewable resources assessment and opens a route to decrease the temporal scale of analysis to meet hydrological requirements. Furthermore, the maps depicting the susceptibility to orographic rainfall enhancement can be used to improve current radar-based quantitative precipitation estimation and forecasting systems and to generate stochastic ensembles of precipitation fields conditioned upon the orography.
Resumo:
Geophysical data may provide crucial information about hydrological properties, states, and processes that are difficult to obtain by other means. Large data sets can be acquired over widely different scales in a minimally invasive manner and at comparatively low costs, but their effective use in hydrology makes it necessary to understand the fidelity of geophysical models, the assumptions made in their construction, and the links between geophysical and hydrological properties. Geophysics has been applied for groundwater prospecting for almost a century, but it is only in the last 20 years that it is regularly used together with classical hydrological data to build predictive hydrological models. A largely unexplored venue for future work is to use geophysical data to falsify or rank competing conceptual hydrological models. A promising cornerstone for such a model selection strategy is the Bayes factor, but it can only be calculated reliably when considering the main sources of uncertainty throughout the hydrogeophysical parameter estimation process. Most classical geophysical imaging tools tend to favor models with smoothly varying property fields that are at odds with most conceptual hydrological models of interest. It is thus necessary to account for this bias or use alternative approaches in which proposed conceptual models are honored at all steps in the model building process.
Resumo:
The present thesis is a contribution to the debate on the applicability of mathematics; it examines the interplay between mathematics and the world, using historical case studies. The first part of the thesis consists of four small case studies. In chapter 1, I criticize "ante rem structuralism", proposed by Stewart Shapiro, by showing that his so-called "finite cardinal structures" are in conflict with mathematical practice. In chapter 2, I discuss Leonhard Euler's solution to the Königsberg bridges problem. I propose interpreting Euler's solution both as an explanation within mathematics and as a scientific explanation. I put the insights from the historical case to work against recent philosophical accounts of the Königsberg case. In chapter 3, I analyze the predator-prey model, proposed by Lotka and Volterra. I extract some interesting philosophical lessons from Volterra's original account of the model, such as: Volterra's remarks on mathematical methodology; the relation between mathematics and idealization in the construction of the model; some relevant details in the derivation of the Third Law, and; notions of intervention that are motivated by one of Volterra's main mathematical tools, phase spaces. In chapter 4, I discuss scientific and mathematical attempts to explain the structure of the bee's honeycomb. In the first part, I discuss a candidate explanation, based on the mathematical Honeycomb Conjecture, presented in Lyon and Colyvan (2008). I argue that this explanation is not scientifically adequate. In the second part, I discuss other mathematical, physical and biological studies that could contribute to an explanation of the bee's honeycomb. The upshot is that most of the relevant mathematics is not yet sufficiently understood, and there is also an ongoing debate as to the biological details of the construction of the bee's honeycomb. The second part of the thesis is a bigger case study from physics: the genesis of GR. Chapter 5 is a short introduction to the history, physics and mathematics that is relevant to the genesis of general relativity (GR). Chapter 6 discusses the historical question as to what Marcel Grossmann contributed to the genesis of GR. I will examine the so-called "Entwurf" paper, an important joint publication by Einstein and Grossmann, containing the first tensorial formulation of GR. By comparing Grossmann's part with the mathematical theories he used, we can gain a better understanding of what is involved in the first steps of assimilating a mathematical theory to a physical question. In chapter 7, I introduce, and discuss, a recent account of the applicability of mathematics to the world, the Inferential Conception (IC), proposed by Bueno and Colyvan (2011). I give a short exposition of the IC, offer some critical remarks on the account, discuss potential philosophical objections, and I propose some extensions of the IC. In chapter 8, I put the Inferential Conception (IC) to work in the historical case study: the genesis of GR. I analyze three historical episodes, using the conceptual apparatus provided by the IC. In episode one, I investigate how the starting point of the application process, the "assumed structure", is chosen. Then I analyze two small application cycles that led to revisions of the initial assumed structure. In episode two, I examine how the application of "new" mathematics - the application of the Absolute Differential Calculus (ADC) to gravitational theory - meshes with the IC. In episode three, I take a closer look at two of Einstein's failed attempts to find a suitable differential operator for the field equations, and apply the conceptual tools provided by the IC so as to better understand why he erroneously rejected both the Ricci tensor and the November tensor in the Zurich Notebook.