26 resultados para Computational methods
em Université de Lausanne, Switzerland
Resumo:
We evaluated 25 protocol variants of 14 independent computational methods for exon identification, transcript reconstruction and expression-level quantification from RNA-seq data. Our results show that most algorithms are able to identify discrete transcript components with high success rates but that assembly of complete isoform structures poses a major challenge even when all constituent elements are identified. Expression-level estimates also varied widely across methods, even when based on similar transcript models. Consequently, the complexity of higher eukaryotic genomes imposes severe limitations on transcript recall and splice product discrimination that are likely to remain limiting factors for the analysis of current-generation RNA-seq data.
Resumo:
AbstractAlthough the genomes from any two human individuals are more than 99.99% identical at the sequence level, some structural variation can be observed. Differences between genomes include single nucleotide polymorphism (SNP), inversion and copy number changes (gain or loss of DNA). The latter can range from submicroscopic events (CNVs, at least 1kb in size) to complete chromosomal aneuploidies. Small copy number variations have often no (lethal) consequences to the cell, but a few were associated to disease susceptibility and phenotypic variations. Larger re-arrangements (i.e. complete chromosome gain) are frequently associated with more severe consequences on health such as genomic disorders and cancer. High-throughput technologies like DNA microarrays enable the detection of CNVs in a genome-wide fashion. Since the initial catalogue of CNVs in the human genome in 2006, there has been tremendous interest in CNVs both in the context of population and medical genetics. Understanding CNV patterns within and between human populations is essential to elucidate their possible contribution to disease. But genome analysis is a challenging task; the technology evolves rapidly creating needs for novel, efficient and robust analytical tools which need to be compared with existing ones. Also, while the link between CNV and disease has been established, the relative CNV contribution is not fully understood and the predisposition to disease from CNVs of the general population has not been yet investigated.During my PhD thesis, I worked on several aspects related to CNVs. As l will report in chapter 3, ! was interested in computational methods to detect CNVs from the general population. I had access to the CoLaus dataset, a population-based study with more than 6,000 participants from the Lausanne area. All these individuals were analysed on SNP arrays and extensive clinical information were available. My work explored existing CNV detection methods and I developed a variety of metrics to compare their performance. Since these methods were not producing entirely satisfactory results, I implemented my own method which outperformed two existing methods. I also devised strategies to combine CNVs from different individuals into CNV regions.I was also interested in the clinical impact of CNVs in common disease (chapter 4). Through an international collaboration led by the Centre Hospitalier Universitaire Vaudois (CHUV) and the Imperial College London I was involved as a main data analyst in the investigation of a rare deletion at chromosome 16p11 detected in obese patients. Specifically, we compared 8,456 obese patients and 11,856 individuals from the general population and we found that the deletion was accounting for 0.7% of the morbid obesity cases and was absent in healthy non- obese controls. This highlights the importance of rare variants with strong impact and provides new insights in the design of clinical studies to identify the missing heritability in common disease.Furthermore, I was interested in the detection of somatic copy number alterations (SCNA) and their consequences in cancer (chapter 5). This project was a collaboration initiated by the Ludwig Institute for Cancer Research and involved other groups from the Swiss Institute of Bioinformatics, the CHUV and Universities of Lausanne and Geneva. The focus of my work was to identify genes with altered expression levels within somatic copy number alterations (SCNA) in seven metastatic melanoma ceil lines, using CGH and SNP arrays, RNA-seq, and karyotyping. Very few SCNA genes were shared by even two melanoma samples making it difficult to draw any conclusions at the individual gene level. To overcome this limitation, I used a network-guided analysis to determine whether any pathways, defined by amplified or deleted genes, were common among the samples. Six of the melanoma samples were potentially altered in four pathways and five samples harboured copy-number and expression changes in components of six pathways. In total, this approach identified 28 pathways. Validation with two external, large melanoma datasets confirmed all but three of the detected pathways and demonstrated the utility of network-guided approaches for both large and small datasets analysis.RésuméBien que le génome de deux individus soit similaire à plus de 99.99%, des différences de structure peuvent être observées. Ces différences incluent les polymorphismes simples de nucléotides, les inversions et les changements en nombre de copies (gain ou perte d'ADN). Ces derniers varient de petits événements dits sous-microscopiques (moins de 1kb en taille), appelés CNVs (copy number variants) jusqu'à des événements plus large pouvant affecter des chromosomes entiers. Les petites variations sont généralement sans conséquence pour la cellule, toutefois certaines ont été impliquées dans la prédisposition à certaines maladies, et à des variations phénotypiques dans la population générale. Les réarrangements plus grands (par exemple, une copie additionnelle d'un chromosome appelée communément trisomie) ont des répercutions plus grave pour la santé, comme par exemple dans certains syndromes génomiques et dans le cancer. Les technologies à haut-débit telle les puces à ADN permettent la détection de CNVs à l'échelle du génome humain. La cartographie en 2006 des CNV du génome humain, a suscité un fort intérêt en génétique des populations et en génétique médicale. La détection de différences au sein et entre plusieurs populations est un élément clef pour élucider la contribution possible des CNVs dans les maladies. Toutefois l'analyse du génome reste une tâche difficile, la technologie évolue très rapidement créant de nouveaux besoins pour le développement d'outils, l'amélioration des précédents, et la comparaison des différentes méthodes. De plus, si le lien entre CNV et maladie a été établit, leur contribution précise n'est pas encore comprise. De même que les études sur la prédisposition aux maladies par des CNVs détectés dans la population générale n'ont pas encore été réalisées.Pendant mon doctorat, je me suis concentré sur trois axes principaux ayant attrait aux CNV. Dans le chapitre 3, je détaille mes travaux sur les méthodes d'analyses des puces à ADN. J'ai eu accès aux données du projet CoLaus, une étude de la population de Lausanne. Dans cette étude, le génome de plus de 6000 individus a été analysé avec des puces SNP et de nombreuses informations cliniques ont été récoltées. Pendant mes travaux, j'ai utilisé et comparé plusieurs méthodes de détection des CNVs. Les résultats n'étant pas complètement satisfaisant, j'ai implémenté ma propre méthode qui donne de meilleures performances que deux des trois autres méthodes utilisées. Je me suis aussi intéressé aux stratégies pour combiner les CNVs de différents individus en régions.Je me suis aussi intéressé à l'impact clinique des CNVs dans le cas des maladies génétiques communes (chapitre 4). Ce projet fut possible grâce à une étroite collaboration avec le Centre Hospitalier Universitaire Vaudois (CHUV) et l'Impérial College à Londres. Dans ce projet, j'ai été l'un des analystes principaux et j'ai travaillé sur l'impact clinique d'une délétion rare du chromosome 16p11 présente chez des patients atteints d'obésité. Dans cette collaboration multidisciplinaire, nous avons comparés 8'456 patients atteint d'obésité et 11 '856 individus de la population générale. Nous avons trouvés que la délétion était impliquée dans 0.7% des cas d'obésité morbide et était absente chez les contrôles sains (non-atteint d'obésité). Notre étude illustre l'importance des CNVs rares qui peuvent avoir un impact clinique très important. De plus, ceci permet d'envisager une alternative aux études d'associations pour améliorer notre compréhension de l'étiologie des maladies génétiques communes.Egalement, j'ai travaillé sur la détection d'altérations somatiques en nombres de copies (SCNA) et de leurs conséquences pour le cancer (chapitre 5). Ce projet fut une collaboration initiée par l'Institut Ludwig de Recherche contre le Cancer et impliquant l'Institut Suisse de Bioinformatique, le CHUV et les Universités de Lausanne et Genève. Je me suis concentré sur l'identification de gènes affectés par des SCNAs et avec une sur- ou sous-expression dans des lignées cellulaires dérivées de mélanomes métastatiques. Les données utilisées ont été générées par des puces ADN (CGH et SNP) et du séquençage à haut débit du transcriptome. Mes recherches ont montrées que peu de gènes sont récurrents entre les mélanomes, ce qui rend difficile l'interprétation des résultats. Pour contourner ces limitations, j'ai utilisé une analyse de réseaux pour définir si des réseaux de signalisations enrichis en gènes amplifiés ou perdus, étaient communs aux différents échantillons. En fait, parmi les 28 réseaux détectés, quatre réseaux sont potentiellement dérégulés chez six mélanomes, et six réseaux supplémentaires sont affectés chez cinq mélanomes. La validation de ces résultats avec deux larges jeux de données publiques, a confirmée tous ces réseaux sauf trois. Ceci démontre l'utilité de cette approche pour l'analyse de petits et de larges jeux de données.Résumé grand publicL'avènement de la biologie moléculaire, en particulier ces dix dernières années, a révolutionné la recherche en génétique médicale. Grâce à la disponibilité du génome humain de référence dès 2001, de nouvelles technologies telles que les puces à ADN sont apparues et ont permis d'étudier le génome dans son ensemble avec une résolution dite sous-microscopique jusque-là impossible par les techniques traditionnelles de cytogénétique. Un des exemples les plus importants est l'étude des variations structurales du génome, en particulier l'étude du nombre de copies des gènes. Il était établi dès 1959 avec l'identification de la trisomie 21 par le professeur Jérôme Lejeune que le gain d'un chromosome supplémentaire était à l'origine de syndrome génétique avec des répercussions graves pour la santé du patient. Ces observations ont également été réalisées en oncologie sur les cellules cancéreuses qui accumulent fréquemment des aberrations en nombre de copies (telles que la perte ou le gain d'un ou plusieurs chromosomes). Dès 2004, plusieurs groupes de recherches ont répertorié des changements en nombre de copies dans des individus provenant de la population générale (c'est-à-dire sans symptômes cliniques visibles). En 2006, le Dr. Richard Redon a établi la première carte de variation en nombre de copies dans la population générale. Ces découvertes ont démontrées que les variations dans le génome était fréquentes et que la plupart d'entre elles étaient bénignes, c'est-à-dire sans conséquence clinique pour la santé de l'individu. Ceci a suscité un très grand intérêt pour comprendre les variations naturelles entre individus mais aussi pour mieux appréhender la prédisposition génétique à certaines maladies.Lors de ma thèse, j'ai développé de nouveaux outils informatiques pour l'analyse de puces à ADN dans le but de cartographier ces variations à l'échelle génomique. J'ai utilisé ces outils pour établir les variations dans la population suisse et je me suis consacré par la suite à l'étude de facteurs pouvant expliquer la prédisposition aux maladies telles que l'obésité. Cette étude en collaboration avec le Centre Hospitalier Universitaire Vaudois a permis l'identification d'une délétion sur le chromosome 16 expliquant 0.7% des cas d'obésité morbide. Cette étude a plusieurs répercussions. Tout d'abord elle permet d'effectuer le diagnostique chez les enfants à naître afin de déterminer leur prédisposition à l'obésité. Ensuite ce locus implique une vingtaine de gènes. Ceci permet de formuler de nouvelles hypothèses de travail et d'orienter la recherche afin d'améliorer notre compréhension de la maladie et l'espoir de découvrir un nouveau traitement Enfin notre étude fournit une alternative aux études d'association génétique qui n'ont eu jusqu'à présent qu'un succès mitigé.Dans la dernière partie de ma thèse, je me suis intéressé à l'analyse des aberrations en nombre de copies dans le cancer. Mon choix s'est porté sur l'étude de mélanomes, impliqués dans le cancer de la peau. Le mélanome est une tumeur très agressive, elle est responsable de 80% des décès des cancers de la peau et est souvent résistante aux traitements utilisés en oncologie (chimiothérapie, radiothérapie). Dans le cadre d'une collaboration entre l'Institut Ludwig de Recherche contre le Cancer, l'Institut Suisse de Bioinformatique, le CHUV et les universités de Lausanne et Genève, nous avons séquencés l'exome (les gènes) et le transcriptome (l'expression des gènes) de sept mélanomes métastatiques, effectués des analyses du nombre de copies par des puces à ADN et des caryotypes. Mes travaux ont permis le développement de nouvelles méthodes d'analyses adaptées au cancer, d'établir la liste des réseaux de signalisation cellulaire affectés de façon récurrente chez le mélanome et d'identifier deux cibles thérapeutiques potentielles jusqu'alors ignorées dans les cancers de la peau.
Resumo:
ABSTRACT The drug discovery process has been profoundly changed recently by the adoption of computational methods helping the design of new drug candidates more rapidly and at lower costs. In silico drug design consists of a collection of tools helping to make rational decisions at the different steps of the drug discovery process, such as the identification of a biomolecular target of therapeutical interest, the selection or the design of new lead compounds and their modification to obtain better affinities, as well as pharmacokinetic and pharmacodynamic properties. Among the different tools available, a particular emphasis is placed in this review on molecular docking, virtual high throughput screening and fragment-based ligand design.
Resumo:
n this paper the iterative MSFV method is extended to include the sequential implicit simulation of time dependent problems involving the solution of a system of pressure-saturation equations. To control numerical errors in simulation results, an error estimate, based on the residual of the MSFV approximate pressure field, is introduced. In the initial time steps in simulation iterations are employed until a specified accuracy in pressure is achieved. This initial solution is then used to improve the localization assumption at later time steps. Additional iterations in pressure solution are employed only when the pressure residual becomes larger than a specified threshold value. Efficiency of the strategy and the error control criteria are numerically investigated. This paper also shows that it is possible to derive an a-priori estimate and control based on the allowed pressure-equation residual to guarantee the desired accuracy in saturation calculation.
Resumo:
BACKGROUND: Accurate catalogs of structural variants (SVs) in mammalian genomes are necessary to elucidate the potential mechanisms that drive SV formation and to assess their functional impact. Next generation sequencing methods for SV detection are an advance on array-based methods, but are almost exclusively limited to four basic types: deletions, insertions, inversions and copy number gains. RESULTS: By visual inspection of 100 Mbp of genome to which next generation sequence data from 17 inbred mouse strains had been aligned, we identify and interpret 21 paired-end mapping patterns, which we validate by PCR. These paired-end mapping patterns reveal a greater diversity and complexity in SVs than previously recognized. In addition, Sanger-based sequence analysis of 4,176 breakpoints at 261 SV sites reveal additional complexity at approximately a quarter of structural variants analyzed. We find micro-deletions and micro-insertions at SV breakpoints, ranging from 1 to 107 bp, and SNPs that extend breakpoint micro-homology and may catalyze SV formation. CONCLUSIONS: An integrative approach using experimental analyses to train computational SV calling is essential for the accurate resolution of the architecture of SVs. We find considerable complexity in SV formation; about a quarter of SVs in the mouse are composed of a complex mixture of deletion, insertion, inversion and copy number gain. Computational methods can be adapted to identify most paired-end mapping patterns.
Resumo:
Exocytosis from synaptic vesicles is driven by stepwise formation of a tight alpha-helical complex between the fusing membranes. The complex is composed of the three SNAREs: synaptobrevin 2, SNAP-25, and syntaxin 1a. An important step in complex formation is fast binding of vesicular synaptobrevin to the preformed syntaxin 1.SNAP-25 dimer. Exactly how this step relates to neurotransmitter release is not well understood. Here, we combined different approaches to gain insights into this reaction. Using computational methods, we identified a stretch in synaptobrevin 2 that may function as a coiled coil "trigger site." This site is also present in many synaptobrevin homologs functioning in other trafficking steps. Point mutations in this stretch inhibited binding to the syntaxin 1.SNAP-25 dimer and slowed fusion of liposomes. Moreover, the point mutations severely inhibited secretion from chromaffin cells. Altogether, this demonstrates that the trigger site in synaptobrevin is crucial for productive SNARE zippering.
Resumo:
The drug discovery process has been deeply transformed recently by the use of computational ligand-based or structure-based methods, helping the lead compounds identification and optimization, and finally the delivery of new drug candidates more quickly and at lower cost. Structure-based computational methods for drug discovery mainly involve ligand-protein docking and rapid binding free energy estimation, both of which require force field parameterization for many drug candidates. Here, we present a fast force field generation tool, called SwissParam, able to generate, for arbitrary small organic molecule, topologies, and parameters based on the Merck molecular force field, but in a functional form that is compatible with the CHARMM force field. Output files can be used with CHARMM or GROMACS. The topologies and parameters generated by SwissParam are used by the docking software EADock2 and EADock DSS to describe the small molecules to be docked, whereas the protein is described by the CHARMM force field, and allow them to reach success rates ranging from 56 to 78%. We have also developed a rapid binding free energy estimation approach, using SwissParam for ligands and CHARMM22/27 for proteins, which requires only a short minimization to reproduce the experimental binding free energy of 214 ligand-protein complexes involving 62 different proteins, with a standard error of 2.0 kcal mol(-1), and a correlation coefficient of 0.74. Together, these results demonstrate the relevance of using SwissParam topologies and parameters to describe small organic molecules in computer-aided drug design applications, together with a CHARMM22/27 description of the target protein. SwissParam is available free of charge for academic users at www.swissparam.ch.
Resumo:
We perform direct numerical simulations of drainage by solving Navier- Stokes equations in the pore space and employing the Volume Of Fluid (VOF) method to track the evolution of the fluid-fluid interface. After demonstrating that the method is able to deal with large viscosity contrasts and to model the transition from stable flow to viscous fingering, we focus on the definition of macroscopic capillary pressure. When the fluids are at rest, the difference between inlet and outlet pressures and the difference between the intrinsic phase average pressure coincide with the capillary pressure. However, when the fluids are in motion these quantities are dominated by viscous forces. In this case, only a definition based on the variation of the interfacial energy provides an accurate measure of the macroscopic capillary pressure and allows separating the viscous from the capillary pressure components.
Resumo:
BACKGROUND: We present the results of EGASP, a community experiment to assess the state-of-the-art in genome annotation within the ENCODE regions, which span 1% of the human genome sequence. The experiment had two major goals: the assessment of the accuracy of computational methods to predict protein coding genes; and the overall assessment of the completeness of the current human genome annotations as represented in the ENCODE regions. For the computational prediction assessment, eighteen groups contributed gene predictions. We evaluated these submissions against each other based on a 'reference set' of annotations generated as part of the GENCODE project. These annotations were not available to the prediction groups prior to the submission deadline, so that their predictions were blind and an external advisory committee could perform a fair assessment. RESULTS: The best methods had at least one gene transcript correctly predicted for close to 70% of the annotated genes. Nevertheless, the multiple transcript accuracy, taking into account alternative splicing, reached only approximately 40% to 50% accuracy. At the coding nucleotide level, the best programs reached an accuracy of 90% in both sensitivity and specificity. Programs relying on mRNA and protein sequences were the most accurate in reproducing the manually curated annotations. Experimental validation shows that only a very small percentage (3.2%) of the selected 221 computationally predicted exons outside of the existing annotation could be verified. CONCLUSION: This is the first such experiment in human DNA, and we have followed the standards established in a similar experiment, GASP1, in Drosophila melanogaster. We believe the results presented here contribute to the value of ongoing large-scale annotation projects and should guide further experimental methods when being scaled up to the entire human genome sequence.
Resumo:
One major methodological problem in analysis of sequence data is the determination of costs from which distances between sequences are derived. Although this problem is currently not optimally dealt with in the social sciences, it has some similarity with problems that have been solved in bioinformatics for three decades. In this article, the authors propose an optimization of substitution and deletion/insertion costs based on computational methods. The authors provide an empirical way of determining costs for cases, frequent in the social sciences, in which theory does not clearly promote one cost scheme over another. Using three distinct data sets, the authors tested the distances and cluster solutions produced by the new cost scheme in comparison with solutions based on cost schemes associated with other research strategies. The proposed method performs well compared with other cost-setting strategies, while it alleviates the justification problem of cost schemes.
Resumo:
Within the ENCODE Consortium, GENCODE aimed to accurately annotate all protein-coding genes, pseudogenes, and noncoding transcribed loci in the human genome through manual curation and computational methods. Annotated transcript structures were assessed, and less well-supported loci were systematically, experimentally validated. Predicted exon-exon junctions were evaluated by RT-PCR amplification followed by highly multiplexed sequencing readout, a method we called RT-PCR-seq. Seventy-nine percent of all assessed junctions are confirmed by this evaluation procedure, demonstrating the high quality of the GENCODE gene set. RT-PCR-seq was also efficient to screen gene models predicted using the Human Body Map (HBM) RNA-seq data. We validated 73% of these predictions, thus confirming 1168 novel genes, mostly noncoding, which will further complement the GENCODE annotation. Our novel experimental validation pipeline is extremely sensitive, far more than unbiased transcriptome profiling through RNA sequencing, which is becoming the norm. For example, exon-exon junctions unique to GENCODE annotated transcripts are five times more likely to be corroborated with our targeted approach than with extensive large human transcriptome profiling. Data sets such as the HBM and ENCODE RNA-seq data fail sampling of low-expressed transcripts. Our RT-PCR-seq targeted approach also has the advantage of identifying novel exons of known genes, as we discovered unannotated exons in ~11% of assessed introns. We thus estimate that at least 18% of known loci have yet-unannotated exons. Our work demonstrates that the cataloging of all of the genic elements encoded in the human genome will necessitate a coordinated effort between unbiased and targeted approaches, like RNA-seq and RT-PCR-seq.
Resumo:
Healthy nutrition is accepted as a cornerstone of public health strategies for reducing the risk of noncommunicable conditions such as obesity, cardiovascular disease, and related morbidities. However, many research studies continue to focus on single or at most a few factors that may elicit a metabolic effect. These reductionist approaches resulted in: (1) exaggerated claims for nutrition as a cure or prevention of disease; (2) the wide use of empirically based dietary regimens, as if one fits all; and (3) frequent disappointment of consumers, patients, and healthcare providers about the real impact nutrition can make on medicine and health. Multiple factors including environment, host and microbiome genetics, social context, the chemical form of the nutrient, its (bio)availability, and chemical and metabolic interactions among nutrients all interact to result in nutrient requirement and in health outcomes. Advances in laboratory methodologies, especially in analytical and separation techniques, are making the chemical dissection of foods and their availability in physiological tissues possible in an unprecedented manner. These omics technologies have opened opportunities for extending knowledge of micronutrients and of their metabolic and endocrine roles. While these technologies are crucial, more holistic approaches to the analysis of physiology and environment, novel experimental designs, and more sophisticated computational methods are needed to advance our understanding of how nutrition influences health of individuals.
Resumo:
Computational modeling has become a widely used tool for unraveling the mechanisms of higher level cooperative cell behavior during vascular morphogenesis. However, experimenting with published simulation models or adding new assumptions to those models can be daunting for novice and even for experienced computational scientists. Here, we present a step-by-step, practical tutorial for building cell-based simulations of vascular morphogenesis using the Tissue Simulation Toolkit (TST). The TST is a freely available, open-source C++ library for developing simulations with the two-dimensional cellular Potts model, a stochastic, agent-based framework to simulate collective cell behavior. We will show the basic use of the TST to simulate and experiment with published simulations of vascular network formation. Then, we will present step-by-step instructions and explanations for building a recent simulation model of tumor angiogenesis. Demonstrated mechanisms include cell-cell adhesion, chemotaxis, cell elongation, haptotaxis, and haptokinesis.
Resumo:
We present a novel spatiotemporal-adaptive Multiscale Finite Volume (MsFV) method, which is based on the natural idea that the global coarse-scale problem has longer characteristic time than the local fine-scale problems. As a consequence, the global problem can be solved with larger time steps than the local problems. In contrast to the pressure-transport splitting usually employed in the standard MsFV approach, we propose to start directly with a local-global splitting that allows to locally retain the original degree of coupling. This is crucial for highly non-linear systems or in the presence of physical instabilities. To obtain an accurate and efficient algorithm, we devise new adaptive criteria for global update that are based on changes of coarse-scale quantities rather than on fine-scale quantities, as it is routinely done before in the adaptive MsFV method. By means of a complexity analysis we show that the adaptive approach gives a noticeable speed-up with respect to the standard MsFV algorithm. In particular, it is efficient in case of large upscaling factors, which is important for multiphysics problems. Based on the observation that local time stepping acts as a smoother, we devise a self-correcting algorithm which incorporates the information from previous times to improve the quality of the multiscale approximation. We present results of multiphase flow simulations both for Darcy-scale and multiphysics (hybrid) problems, in which a local pore-scale description is combined with a global Darcy-like description. The novel spatiotemporal-adaptive multiscale method based on the local-global splitting is not limited to porous media flow problems, but it can be extended to any system described by a set of conservation equations.
Resumo:
Recently, the introduction of second generation sequencing and further advance-ments in confocal microscopy have enabled system-level studies for the functional characterization of genes. The degree of complexity intrinsic to these approaches needs the development of bioinformatics methodologies and computational models for extracting meaningful biological knowledge from the enormous amount of experi¬mental data which is continuously generated. This PhD thesis presents several novel bioinformatics methods and computational models to address specific biological questions in Plant Biology by using the plant Arabidopsis thaliana as a model system. First, a spatio-temporal qualitative analysis of quantitative transcript and protein profiles is applied to show the role of the BREVIS RADIX (BRX) protein in the auxin- cytokinin crosstalk for root meristem growth. Core of this PhD work is the functional characterization of the interplay between the BRX protein and the plant hormone auxin in the root meristem by using a computational model based on experimental evidence. Hyphotesis generated by the modelled to the discovery of a differential endocytosis pattern in the root meristem that splits the auxin transcriptional response via the plasma membrane to nucleus partitioning of BRX. This positional information system creates an auxin transcriptional pattern that deviates from the canonical auxin response and is necessary to sustain the expression of a subset of BRX-dependent auxin-responsive genes to drive root meristem growth. In the second part of this PhD thesis, we characterized the genome-wide impact of large scale deletions on four divergent Arabidopsis natural strains, through the integration of Ultra-High Throughput Sequencing data with data from genomic hybridizations on tiling arrays. Analysis of the identified deletions revealed a considerable portion of protein coding genes affected and supported a history of genomic rearrangements shaped by evolution. In the last part of the thesis, we showed that VIP3 gene in Arabidopsis has an evo-lutionary conserved role in the 3' to 5' mRNA degradation machinery, by applying a novel approach for the analysis of mRNA-Seq data from random-primed mRNA. Altogether, this PhD research contains major advancements in the study of natural genomic variation in plants and in the application of computational morphodynamics models for the functional characterization of biological pathways essential for the plant. - Récemment, l'introduction du séquençage de seconde génération et les avancées dans la microscopie confocale ont permis des études à l'échelle des différents systèmes cellulaires pour la caractérisation fonctionnelle de gènes. Le degrés de complexité intrinsèque à ces approches ont requis le développement de méthodologies bioinformatiques et de modèles mathématiques afin d'extraire de la masse de données expérimentale générée, des information biologiques significatives. Ce doctorat présente à la fois des méthodes bioinformatiques originales et des modèles mathématiques pour répondre à certaines questions spécifiques de Biologie Végétale en utilisant la plante Arabidopsis thaliana comme modèle. Premièrement, une analyse qualitative spatio-temporelle de profiles quantitatifs de transcripts et de protéines est utilisée pour montrer le rôle de la protéine BREVIS RADIX (BRX) dans le dialogue entre l'auxine et les cytokinines, des phytohormones, dans la croissance du méristème racinaire. Le noyau de ce travail de thèse est la caractérisation fonctionnelle de l'interaction entre la protéine BRX et la phytohormone auxine dans le méristème de la racine en utilisant des modèles informatiques basés sur des preuves expérimentales. Les hypothèses produites par le modèle ont mené à la découverte d'un schéma différentiel d'endocytose dans le méristème racinaire qui divise la réponse transcriptionnelle à l'auxine par le partitionnement de BRX de la membrane plasmique au noyau de la cellule. Cette information positionnelle crée une réponse transcriptionnelle à l'auxine qui dévie de la réponse canonique à l'auxine et est nécessaire pour soutenir l'expression d'un sous ensemble de gènes répondant à l'auxine et dépendant de BRX pour conduire la croissance du méristème. Dans la seconde partie de cette thèse de doctorat, nous avons caractérisé l'impact sur l'ensemble du génome des délétions à grande échelle sur quatre souches divergentes naturelles d'Arabidopsis, à travers l'intégration du séquençage à ultra-haut-débit avec l'hybridation génomique sur puces ADN. L'analyse des délétions identifiées a révélé qu'une proportion considérable de gènes codant était affectée, supportant l'idée d'un historique de réarrangement génomique modelé durant l'évolution. Dans la dernière partie de cette thèse, nous avons montré que le gène VÏP3 dans Arabidopsis a conservé un rôle évolutif dans la machinerie de dégradation des ARNm dans le sens 3' à 5', en appliquant une nouvelle approche pour l'analyse des données de séquençage d'ARNm issue de transcripts amplifiés aléatoirement. Dans son ensemble, cette recherche de doctorat contient des avancées majeures dans l'étude des variations génomiques naturelles des plantes et dans l'application de modèles morphodynamiques informatiques pour la caractérisation de réseaux biologiques essentiels à la plante. - Le développement des plantes est écrit dans leurs codes génétiques. Pour comprendre comment les plantes sont capables de s'adapter aux changements environnementaux, il est essentiel d'étudier comment leurs gènes gouvernent leur formation. Plus nous essayons de comprendre le fonctionnement d'une plante, plus nous réalisons la complexité des mécanismes biologiques, à tel point que l'utilisation d'outils et de modèles mathématiques devient indispensable. Dans ce travail, avec l'utilisation de la plante modèle Arabidopsis thalicinci nous avons résolu des problèmes biologiques spécifiques à travers le développement et l'application de méthodes informatiques concrètes. Dans un premier temps, nous avons investigué comment le gène BREVIS RADIX (BRX) régule le développement de la racine en contrôlant la réponse à deux hormones : l'auxine et la cytokinine. Nous avons employé une analyse statistique sur des mesures quantitatives de transcripts et de produits de gènes afin de démontrer que BRX joue un rôle antagonisant dans le dialogue entre ces deux hormones. Lorsque ce-dialogue moléculaire est perturbé, la racine primaire voit sa longueur dramatiquement réduite. Pour comprendre comment BRX répond à l'auxine, nous avons développé un modèle informatique basé sur des résultats expérimentaux. Les simulations successives ont mené à la découverte d'un signal positionnel qui contrôle la réponse de la racine à l'auxine par la régulation du mouvement intracellulaire de BRX. Dans la seconde partie de cette thèse, nous avons analysé le génome entier de quatre souches naturelles d'Arabidopsis et nous avons trouvé qu'une grande partie de leurs gènes étaient manquant par rapport à la souche de référence. Ce résultat indique que l'historique des modifications génomiques conduites par l'évolution détermine une disponibilité différentielle des gènes fonctionnels dans ces plantes. Dans la dernière partie de ce travail, nous avons analysé les données du transcriptome de la plante où le gène VIP3 était non fonctionnel. Ceci nous a permis de découvrir le rôle double de VIP3 dans la régulation de l'initiation de la transcription et dans la dégradation des transcripts. Ce rôle double n'avait jusqu'alors été démontrée que chez l'homme. Ce travail de doctorat supporte le développement et l'application de méthodologies informatiques comme outils inestimables pour résoudre la complexité des problèmes biologiques dans la recherche végétale. L'intégration de la biologie végétale et l'informatique est devenue de plus en plus importante pour l'avancée de nos connaissances sur le fonctionnement et le développement des plantes.