5 resultados para Compound Poisson Process
em Université de Lausanne, Switzerland
Resumo:
In the framework of the classical compound Poisson process in collective risk theory, we study a modification of the horizontal dividend barrier strategy by introducing random observation times at which dividends can be paid and ruin can be observed. This model contains both the continuous-time and the discrete-time risk model as a limit and represents a certain type of bridge between them which still enables the explicit calculation of moments of total discounted dividend payments until ruin. Numerical illustrations for several sets of parameters are given and the effect of random observation times on the performance of the dividend strategy is studied.
Resumo:
We characterize the value function of maximizing the total discounted utility of dividend payments for a compound Poisson insurance risk model when strictly positive transaction costs are included, leading to an impulse control problem. We illustrate that well known simple strategies can be optimal in the case of exponential claim amounts. Finally we develop a numerical procedure to deal with general claim amount distributions.
Resumo:
The paper is motivated by the valuation problem of guaranteed minimum death benefits in various equity-linked products. At the time of death, a benefit payment is due. It may depend not only on the price of a stock or stock fund at that time, but also on prior prices. The problem is to calculate the expected discounted value of the benefit payment. Because the distribution of the time of death can be approximated by a combination of exponential distributions, it suffices to solve the problem for an exponentially distributed time of death. The stock price process is assumed to be the exponential of a Brownian motion plus an independent compound Poisson process whose upward and downward jumps are modeled by combinations (or mixtures) of exponential distributions. Results for exponential stopping of a Lévy process are used to derive a series of closed-form formulas for call, put, lookback, and barrier options, dynamic fund protection, and dynamic withdrawal benefit with guarantee. We also discuss how barrier options can be used to model lapses and surrenders.
Resumo:
This paper provides a new and accessible approach to establishing certain results concerning the discounted penalty function. The direct approach consists of two steps. In the first step, closed-form expressions are obtained in the special case in which the claim amount distribution is a combination of exponential distributions. A rational function is useful in this context. For the second step, one observes that the family of combinations of exponential distributions is dense. Hence, it suffices to reformulate the results of the first step to obtain general results. The surplus process has downward and upward jumps, modeled by two independent compound Poisson processes. If the distribution of the upward jumps is exponential, a series of new results can be obtained with ease. Subsequently, certain results of Gerber and Shiu [H. U. Gerber and E. S. W. Shiu, North American Actuarial Journal 2(1): 48–78 (1998)] can be reproduced. The two-step approach is also applied when an independent Wiener process is added to the surplus process. Certain results are related to Zhang et al. [Z. Zhang, H. Yang, and S. Li, Journal of Computational and Applied Mathematics 233: 1773–1 784 (2010)], which uses different methods.
Resumo:
We show that a simple mixing idea allows one to establish a number of explicit formulas for ruin probabilities and related quantities in collective risk models with dependence among claim sizes and among claim inter-occurrence times. Examples include compound Poisson risk models with completely monotone marginal claim size distributions that are dependent according to Archimedean survival copulas as well as renewal risk models with dependent inter-occurrence times.