54 resultados para Compliant cannula
em Université de Lausanne, Switzerland
Resumo:
The Smart canula concept allows for collapsed cannula insertion, and self-expansion within a vein of the body. (A) Computational fluid dynamics, and (B) bovine experiments (76+/-3.8 kg) were performed for comparative analyses, prior to (C) the first clinical application. For an 18F access, a given flow of 4 l/min (A) resulted in a pressure drop of 49 mmHg for smart cannula versus 140 mmHg for control. The corresponding Reynolds numbers are 680 versus 1170, respectively. (B) For an access of 28F, the maximal flow for smart cannula was 5.8+/-0.5 l/min versus 4.0+/-0.1 l/min for standard (P<0.0001), for 24F 5.5+/-0.6 l/min versus 3.2+/-0.4 l/min (P<0.0001), and for 20F 4.1+/-0.3 l/min versus 1.6+/-0.3 l/min (P<0.0001). The flow obtained with the smart cannula was 270+/-45% (20F), 172+/-26% (24F), and 134+/-13% (28F) of standard (one-way ANOVA, P=0.014). (C) First clinical application (1.42 m2) with a smart cannula showed 3.55 l/min (100% predicted) without additional fluids. All three assessment steps confirm the superior performance of the smart cannula design.
Resumo:
Cannula design is of prime importance for venous drainage during cardiopulmonary bypass (CPB). To evaluate cannulas intended for CPB, an in vitro circuit was set up with silicone tubing between the test cannula encased in a movable preload reservoir and another static reservoir. The pressure-drop (DeltaP) value (P-drainage - P-preload) was measured using Millar pressure transducers. Flow rate (Q) was measured using an ultrasound flowmeter. Data display and data recording were controlled using a LabView application, custom made particularly for our experiments. Our results demonstrated that DeltaP, Q, and cannula resistance (DeltaP/Q) values were significantly decreased when the cannula diameter was increased for Smart and Medtronic cannulas. Smartcanula showed 36% and 43% less resistance compared to Medtronic venous and Medtronic femoral cannulas, respectively. The cannula shape (straight- or curved-tips) did not affect the DLP cannula resistance. Out of five cannulas tested, the Smartcanula outperforms the other commercially available cannulas. The mean (DeltaP/Q) values were 3.3 +/- 0.08, 4.07 +/- 0.08, 5.58 +/- 0.10, 5.74 +/- 0.15, and 6.45 +/- 0.15 for Smart, Medtronic, Edwards, Sarns, and Gambro cannulas, respectively (two-way ANOVA, p < 0.0001). In conclusion, the present assay allows discrimination between different forms of cannula with high or low lumen resistance.
Resumo:
The aim of this report is to address the benefits of the minimal invasive venous drainage in a pediatric cardio surgical scenario. Juvenile bovine experiments (67.4+/-11 kg) were performed. The right atrium was cannulated in a trans-jugular way by using the self-expandable (Smart Stat, 12/20F, 430 mm) venous cannula (Smartcannula LLC, Lausanne, Switzerland) vs. a 14F 250 mm (Polystan Lighthouse) standard pediatric venous cannula. Establishing the cardiopulmonary bypass (CPB), the blood flows were assessed for 20 mmHg, 30 mmHg and 40 mmHg of driving pressure. Venous drainage (flow in l/min) at 20 mmHg, 30 mmHg, and 40 mmHg drainage load was 0.26+/-0.1, 0.35+/-0.2 and 0.28+/-0.08 for the 14F standard vs. 1.31+/-0.22, 1.35+/-0.24 and 1.9+/-0.2 for the Smart Stat 12/20F cannula. The 43 cm self-expanding 12/20F Smartcannula outperforms the 14F standard cannula. The results described herein allow us to conclude that usage of the self-expanding Smartcannula also in the pediatric patients improves the flow and the drainage capacity, avoiding the insufficient and excessive drainage. We believe that similar results may be expected in the clinical settings.
Resumo:
Background: The variety of DNA microarray formats and datasets presently available offers an unprecedented opportunity to perform insightful comparisons of heterogeneous data. Cross-species studies, in particular, have the power of identifying conserved, functionally important molecular processes. Validation of discoveries can now often be performed in readily available public data which frequently requires cross-platform studies.Cross-platform and cross-species analyses require matching probes on different microarray formats. This can be achieved using the information in microarray annotations and additional molecular biology databases, such as orthology databases. Although annotations and other biological information are stored using modern database models ( e. g. relational), they are very often distributed and shared as tables in text files, i.e. flat file databases. This common flat database format thus provides a simple and robust solution to flexibly integrate various sources of information and a basis for the combined analysis of heterogeneous gene expression profiles.Results: We provide annotationTools, a Bioconductor-compliant R package to annotate microarray experiments and integrate heterogeneous gene expression profiles using annotation and other molecular biology information available as flat file databases. First, annotationTools contains a specialized set of functions for mining this widely used database format in a systematic manner. It thus offers a straightforward solution for annotating microarray experiments. Second, building on these basic functions and relying on the combination of information from several databases, it provides tools to easily perform cross-species analyses of gene expression data.Here, we present two example applications of annotationTools that are of direct relevance for the analysis of heterogeneous gene expression profiles, namely a cross-platform mapping of probes and a cross-species mapping of orthologous probes using different orthology databases. We also show how to perform an explorative comparison of disease-related transcriptional changes in human patients and in a genetic mouse model.Conclusion: The R package annotationTools provides a simple solution to handle microarray annotation and orthology tables, as well as other flat molecular biology databases. Thereby, it allows easy integration and analysis of heterogeneous microarray experiments across different technological platforms or species.
Resumo:
OBJECTIVE: Transthoracic echocardiography (TTE) has been used clinically to disobstruct venous drainage cannula and to optimise placement of venous cannulae in the vena cava but it has never been used to evaluate performance capabilities. Also, little progress has been made in venous cannula design in order to optimise venous return to the heart lung machine. We designed a self-expandable Smartcanula (SC) and analysed its performance capability using echocardiography. METHODS: An epicardial echocardiography probe was placed over the SC or control cannula (CTRL) and a Doppler image was obtained. Mean (V(m)) and maximum (V(max)) velocities, flow and diameter were obtained. Also, pressure drop (DeltaP(CPB)) was obtained between the central venous pressure and inlet to venous reservoir. LDH and Free Hb were also compared in 30 patients. Comparison was made between the two groups using the student's t-test with statistical significance established when p<0.05. RESULTS: Age for the SC and CC groups were 61.6+/-17.6 years and 64.6+/-13.1 years, respectively. Weight was 70.3+/-11.6 kg and 72.8+/-14.4 kg, respectively. BSA was 1.80+/-0.2 m(2) and 1.82+/-0.2 m(2), respectively. CPB times were 114+/-53 min and 108+/-44 min, respectively. Cross-clamp time was 59+/-15 min and 76+/-29 min, respectively (p=NS). Free-Hb was 568+/-142 U/l versus 549+/-271 U/l post-CPB for the SC and CC, respectively (p=NS). LDH was 335+/-73 mg/l versus 354+/-116 mg/l for the SC and CC, respectively (p=NS). V(m) was 89+/-10 cm/s (SC) versus 63+/-3 cm/s (CC), V(max) was 139+/-23 cm/s (SC) versus 93+/-11 cm/s (CC) (both p<0.01). DeltaP(CPB) was 30+/-10 mmHg (SC) versus 43+/-13 mmHg (CC) (p<0.05). A Bland-Altman test showed good agreement between the two devices used concerning flow rate calculations between CPB and TTE (bias 300 ml+/-700 ml standard deviation). CONCLUSIONS: This novel Smartcanula design, due to its self-expanding principle, provides superior flow characteristics compared to classic two stage venous cannula used for adult CPB surgery. No detrimental effects were observed concerning blood damage. Echocardiography was effective in analysing venous cannula performance and velocity patterns.
Resumo:
Adequate in-vitro training in valved stents deployment as well as testing of the latter devices requires compliant real-size models of the human aortic root. The casting methods utilized up to now are multi-step, time consuming and complicated. We pursued a goal of building a flexible 3D model in a single-step procedure. We created a precise 3D CAD model of a human aortic root using previously published anatomical and geometrical data and printed it using a novel rapid prototyping system developed by the Fab@Home project. As a material for 3D fabrication we used common house-hold silicone and afterwards dip-coated several models with dispersion silicone one or two times. To assess the production precision we compared the size of the final product with the CAD model. Compliance of the models was measured and compared with native porcine aortic root. Total fabrication time was 3 h and 20 min. Dip-coating one or two times with dispersion silicone if applied took one or two extra days, respectively. The error in dimensions of non-coated aortic root model compared to the CAD design was <3.0% along X, Y-axes and 4.1% along Z-axis. Compliance of a non-coated model as judged by the changes of radius values in the radial direction by 16.39% is significantly different (P<0.001) from native aortic tissue--23.54% at the pressure of 80-100 mmHg. Rapid prototyping of compliant, life-size anatomical models with the Fab@Home 3D printer is feasible--it is very quick compared to previous casting methods.
Resumo:
OBJECTIVES: A new caval tree system was designed for realistic in vitro simulation. The objective of our study was to assess cannula performance for virtually wall-less versus standard percutaneous thin-walled venous cannulas in a setting of venous collapse in case of negative pressure. METHODS: For a collapsible caval model, a very flexible plastic material was selected, and a model with nine afferent veins was designed according to the anatomy of the vena cava. A flow bench was built including a lower reservoir holding the caval tree, built by taking into account the main afferent vessels and their flow provided by a reservoir 6 cm above. A cannula was inserted in this caval tree and connected to a centrifugal pump that, in turn, was connected to a reservoir positioned 83 cm above the second lower reservoir (after-load = 60 mmHg). Using the same pre-load, the simulated venous drainage for cardiopulmonary bypass was realized using a 24 F wall-less cannula (Smartcanula) and 25 F percutaneous cannula (Biomedicus), and stepwise increased augmentation (1500 RPM, 2000 and 2500 RPM) of venous drainage. RESULTS: For the thin wall and the wall-less cannulas, 36 pairs of flow and pressure measurements were realized for three different RPM values. The mean Q-values at 1500, 2000 and 2500 RPM were: 3.98 ± 0.01, 6.27 ± 0.02 and 9.81 ± 0.02 l/min for the wall-less cannula (P <0.0001), versus 2.74 ± 0.02, 3.06 ± 0.05, 6.78 ± 0.02 l/min for the thin-wall cannula (P <0.0001). The corresponding inlet pressure values were: -8.88 ± 0.01, -23.69 ± 0.81 and -70.22 ± 0.18 mmHg for the wall-less cannula (P <0.0001), versus -36.69 ± 1.88, -80.85 ± 1.71 and -101.83 ± 0.45 mmHg for the thin-wall cannula (P <0.0001). The thin-wall cannula showed mean Q-values 37% less and mean P values 26% more when compared with the wall-less cannula (P <0.0001). CONCLUSIONS: Our in vitro water test was able to mimic a negative pressure situation, where the wall-less cannula design performs better compared with the traditional thin-wall cannula.
Resumo:
BACKGROUND: In an experimental setting, the performance of the LifeBox, a new portable extracorporeal membrane oxygenator (ECMO) system suitable for patient transport, is presented. Standard rectilinear percutaneous cannulae are normally employed for this purpose, but have limited flow and pressure delivery due to their rigid structure. Therefore, we aimed to determine the potential for flow increase by using self-expanding venous cannulae. METHODS: Veno-arterial bypass was established in three pigs (40.6+/-5.1 kg). The venous line of the cardiopulmonary bypass was established by cannulation of the external jugular vein. The arterial side of the circulation was secured by cannulation of the common carotid artery. Two different venous cannulae (SmartCanula 18/36F 430mm and Biomedicus 19F) were examined for their functional integrity when used in conjunction with the centrifugal pump (500-3000 RPM) of the LifeBox system. RESULTS: At 1500, 2000, 2500, and 3000 RPM, the blood flow increased steadily for each cannula, but remained higher in the self-expanding cannula. That is, the 19F rectilinear cannula achieved a blood flow of 0.93+/-0.14, 1.47+/-0.37, 1.9+/-0.68, and 1.5+/-0.9 l/min, respectively, and the 18/36F self-expanding cannula achieved 1.1+/-0.1, 1.9+/-0.33, 2.8+/-0.39 and 3.66+/-0.52 l/min. However, when tested for venous line pressure, the standard venous cannula achieved -29+/-10.7mmHg while the self-expanding cannula achieved -13.6 +/-4.3mmHg at 1500 RMP. As the RPM increased from 2500 to 3000, the venous line pressure accounted for -141.9+/-20 and -98+/-7.3mmHg for the 19F rectilinear cannula and -30.6+/-6.4 and -45+/-11.6mmHg for the self-expanding cannula. CONCLUSION: The self-expanding cannula exhibited superior venous drainage ability when compared to the performance of the standard rectilinear cannula with the use of the LifeBox. The flow rate achieved was approximately 40% greater than the standard drainage device, with a maximal pump flow recorded at 4.3l/min.
Resumo:
OBJECTIVE: Bench evaluation of the hydrodynamic behavior of venous cannulas is a valuable technique for the analysis of their performance during cardiopulmonary bypass (CPB). The aim of this study was to investigate the effect of the internal diameter of the extracorporeal connecting tube of venous cannulas on flow rate (Q), pressure drop (delta P), and cannula resistance (delta P/Q²) values, using a computer assisted test bench.¦METHODS: An in vitro circuit was set up with silicone tubing between the test cannula encased in a movable reservoir, and a static reservoir. The delta P, defined as the difference between the drainage pressure and the preload pressure, was measured using high-fidelity Millar pressure transducers. Q was measured using an ultrasonic flowmeter. Data display and data recording were controlled using virtual instruments in a stepwise fashion.¦RESULTS: The 27 F smartcanula® with a 9 mm connecting tube diameter showed 17% less resistance compared to that with an 8 mm connecting tube diameter. Q values were 7.22±0.1 and 7.81±0.04 L/min for cannulas with 8 mm and 9 mm connecting tube diameters, respectively. The delta P/Q² ratio values were 72% lower for the Medtronic cannula with a 9 mm connecting tube diameter compared to that with an 8 mm connecting tube diameter. Q values for the Medtronic cannula were 3.94±0.23 and 6.58±0.04 L/min with 8 mm and 9 mm connecting tube diameters, respectively. The 27 F smartcanula® showed 13% more flow rate compared to the 28 F Medtronic cannula using the unpaired Student t-test (p<0.0001).¦CONCLUSIONS: Our results demonstrated that Q was increased but delta P and delta P/Q² values were significantly decreased when the connecting tube diameter was increased for venous cannulas. The connecting tube diameter significantly affected the resistance to liquid flow through the cannula. Smartcanulas® outperform Medtronic cannulas.
Resumo:
Severe acute refractory respiratory failure is considered a life-threatening situation, with a high mortality of 40 to 60%. When conservative oxygenation methods fail, a lifesaving measure is the introduction of extracorporeal membrane oxygenation (ECMO). Venovenous ECMO (VV-ECMO) is a preferred modality of support for patients with refractory acute respiratory failure. Specifically, bicaval VV-ECMO is a well-recognized and validated therapy, where single or double periphery venous access is used for the insertion of two differently sized cannulas in order to achieve adequate blood oxygenation. Compared to venoarterial ECMO, in VV-ECMO, the rate of complications, such as thrombosis, bleeding, infection and ischemic events, is lower. On the other hand, the size and insertion location is an obstacle to patient mobilization. This is a considerable problem for patients where the time interval for lung recovery and the bridge to the transplantation is prolonged. To address this issue, a dual-lumen, single venovenous cannula was introduced. Here, by insertion of one single catheter in one target vessel, in a majority of cases in the right internal jugular vein, satisfactory oxygenation of the patient is achieved. In this form, the instituted VV-ECMO enables patient mobility, better physical rehabilitation and facilitates pulmonary extubation and toilet. However, relatively early, after the first short-term reports were published, a relatively high complication rate became evident. In the recent literature, the complication rate using actual commercially available double-lumen venovenous cannula ranges between 5 and 30%. These cases were mostly conjoined to the implantation phase or the early postoperative phase and vary between right heart perforation to migration of the cannula. This review focuses on complications allied to commercially available dual-lumen, single, venovenous cannula implantation, pointing out the critical segments of the implantation process and analyzing the structure of the device.
Resumo:
Venous cannula orifice obstruction is an underestimated problem during augmented cardiopulmonary bypass (CPB), which can potentially be reduced with redesigned, virtually wall-less cannula designs versus traditional percutaneous control venous cannulas. A bench model, allowing for simulation of the vena cava with various affluent orifices, venous collapse and a worst case scenario with regard to cannula position, was developed. Flow (Q) was measured sequentially for right atrial + hepatic + renal + iliac drainage scenarios, using a centrifugal pump and an experimental bench set-up (afterload 60 mmHg). At 1500, 2000 and 2500 RPM and atrial position, the Q values were 3.4, 6.03 and 8.01 versus 0.77*, 0.43* and 0.58* l/min: p<0.05* for wall-less and the Biomedicus(®) cannula, respectively. The corresponding pressure values were -15.18, -31.62 and -74.53 versus -46.0*, -119.94* and -228.13* mmHg. At the hepatic position, the Q values were 3.34, 6.67 and 9.26 versus 2.3*, 0.42* and 0.18* l/min; and the pressure values were -10.32, -20.25 and -42.83 versus -23.35*, -119.09* and -239.38* mmHg. At the renal position, the Q values were 3.43, 6.56 and 8.64 versus 2.48*, 0.41* and 0.22* l/min and the pressure values were -9.64, -20.98 and -63.41 versus -20.87 -127.68* and -239* mmHg, respectively. At the iliac position, the Q values were 3.43, 6.01 and 9.25 versus 1.62*, 0.55* and 0.58* l/min; the pressure values were -9.36, -33.57 and -44.18 versus -30.6*, -120.27* and -228* mmHg, respectivly. Our experimental evaluation demonstrates that the redesigned, virtually wall-less cannulas, allowing for direct venous drainage at practically all intra-venous orifices, outperform the commercially available control cannula, with superior flow at reduced suction levels for all scenarios tested.
Resumo:
Purpose: In extreme situations, such as hyperacute rejection of heart transplant or major bleeding per-operating complications, an urgent heart explantation might be the only means of survival. The aim of this experimental study was to improve the surgical technique and the hemodynamics of an Extracorporeal Membrane Oxygenation (ECMO) support through a peripheral vascular access in an acardia model. Methods: An ECMO support was established in 7 bovine experiments (59±6.1 kg) by the transjugular insertion to the caval axis of a self-expanded cannula, with return through a carotid artery. After baseline measurements of pump flow and arterial and central venous pressure, ventricular fibrillation was induced (B), the great arteries were clamped, the heart was excised and right and left atria remnants, containing the pulmonary veins, were sutured together leaving an atrial septal defect (ASD) over the cannula in the caval axis. Measurements were taken with the pulmonary artery (PA) clamped (C) and anastomosed with the caval axis (D). Regular arterial and central venous blood gases tests were performed. The ANOVA test for repeated measures was used to test the null hypothesis and a Bonferroni t method for assessing the significance in the between groups pairwise comparison of mean pump flow. Results: Initial pump flow (A) was 4.3±0.6 L/min dropping to 2.8±0.7 L/min (P B-A= 0.003) 10 minutes after induction of ventricular fibrillation (B). After cardiectomy, with the pulmonary artery clamped (C) it augmented not significantly to 3.5±0.8 L/min (P C-B= 0.33, P C-A= 0.029). Finally, PA anastomosis to the caval axis was followed by an almost to baseline pump flow augmentation (4.1±0.7 L/min, P D-B= 0.009, P D-C= 0.006, P D-A= 0.597), permitting a full ECMO support in acardia by a peripheral vascular access. Conclusions: ECMO support in acardia is feasible, providing new opportunities in situations where heart must urgently be explanted, as in hyperacute rejection of heart transplant. Adequate drainage of pulmonary circulation is pivotal in order to avoid pulmonary congestion and loss of volume from the normal right to left shunt of bronchial vessels. Furthermore, the PA anastomosis to the caval axis not only improves pump flow but it also permits an ECMO support by a peripheral vascular access and the closure of the chest.
Resumo:
BACKGROUND: Early detection and treatment of colorectal adenomatous polyps (AP) and colorectal cancer (CRC) is associated with decreased mortality for CRC. However, accurate, non-invasive and compliant tests to screen for AP and early stages of CRC are not yet available. A blood-based screening test is highly attractive due to limited invasiveness and high acceptance rate among patients. AIM: To demonstrate whether gene expression signatures in the peripheral blood mononuclear cells (PBMC) were able to detect the presence of AP and early stages CRC. METHODS: A total of 85 PBMC samples derived from colonoscopy-verified subjects without lesion (controls) (n = 41), with AP (n = 21) or with CRC (n = 23) were used as training sets. A 42-gene panel for CRC and AP discrimination, including genes identified by Digital Gene Expression-tag profiling of PBMC, and genes previously characterised and reported in the literature, was validated on the training set by qPCR. Logistic regression analysis followed by bootstrap validation determined CRC- and AP-specific classifiers, which discriminate patients with CRC and AP from controls. RESULTS: The CRC and AP classifiers were able to detect CRC with a sensitivity of 78% and AP with a sensitivity of 46% respectively. Both classifiers had a specificity of 92% with very low false-positive detection when applied on subjects with inflammatory bowel disease (n = 23) or tumours other than CRC (n = 14). CONCLUSION: This pilot study demonstrates the potential of developing a minimally invasive, accurate test to screen patients at average risk for colorectal cancer, based on gene expression analysis of peripheral blood mononuclear cells obtained from a simple blood sample.
Resumo:
PURPOSE: Gastric or intestinal patches, commonly used for reconstructive cystoplasty, may induce severe metabolic complications. The use of bladder tissues reconstructed in vitro could avoid these complications. We compared cellular differentiation and permeability characteristics of human native with in vitro cultured stratified urothelium. MATERIALS AND METHODS: Human stratified urothelium was induced in vitro. Morphology was studied with light and electron microscopy and expression of key cellular proteins was assessed using immunohistochemistry. Permeability coefficients were determined by measuring water, urea, ammonia and proton fluxes across the urothelium. RESULTS: As in native urothelium the stratified urothelial construct consisted of basal membrane and basal, intermediate and superficial cell layers. The apical membrane of superficial cells formed villi and glycocalices, and tight junctions and desmosomes were developed. Immunohistochemistry showed similarities and differences in the expression of cytokeratins, integrin and cellular adhesion proteins. In the cultured urothelium cytokeratin 20 and integrin subunits alpha6 and beta4 were absent, and symplekin was expressed diffusely in all layers. Uroplakins were clearly expressed in the superficial umbrella cells of the urothelial constructs, however, they were also present in intermediate and basal cells. Symplekin and uroplakins were expressed only in the superficial cells of native bladder tissue. The urothelial constructs showed excellent viability, and functionally their permeabilities for water, urea and ammonia were no different from those measured in native human urothelium. Proton permeability was even lower in the constructs compared to that of native urothelium. CONCLUSIONS: Although the in vitro cultured human stratified urothelium did not show complete terminal differentiation of its superficial cells, it retained the same barrier characteristics against the principal urine components. These results indicate that such in vitro cultured urothelium, after being grown on a compliant degradable support or in coculture with smooth muscle cells, is suitable for reconstructive cystoplasty.