47 resultados para Complex systems prediction

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Sitting between your past and your future doesn't mean you are in the present. Dakota Skye Complex systems science is an interdisciplinary field grouping under the same umbrella dynamical phenomena from social, natural or mathematical sciences. The emergence of a higher order organization or behavior, transcending that expected of the linear addition of the parts, is a key factor shared by all these systems. Most complex systems can be modeled as networks that represent the interactions amongst the system's components. In addition to the actual nature of the part's interactions, the intrinsic topological structure of underlying network is believed to play a crucial role in the remarkable emergent behaviors exhibited by the systems. Moreover, the topology is also a key a factor to explain the extraordinary flexibility and resilience to perturbations when applied to transmission and diffusion phenomena. In this work, we study the effect of different network structures on the performance and on the fault tolerance of systems in two different contexts. In the first part, we study cellular automata, which are a simple paradigm for distributed computation. Cellular automata are made of basic Boolean computational units, the cells; relying on simple rules and information from- the surrounding cells to perform a global task. The limited visibility of the cells can be modeled as a network, where interactions amongst cells are governed by an underlying structure, usually a regular one. In order to increase the performance of cellular automata, we chose to change its topology. We applied computational principles inspired by Darwinian evolution, called evolutionary algorithms, to alter the system's topological structure starting from either a regular or a random one. The outcome is remarkable, as the resulting topologies find themselves sharing properties of both regular and random network, and display similitudes Watts-Strogtz's small-world network found in social systems. Moreover, the performance and tolerance to probabilistic faults of our small-world like cellular automata surpasses that of regular ones. In the second part, we use the context of biological genetic regulatory networks and, in particular, Kauffman's random Boolean networks model. In some ways, this model is close to cellular automata, although is not expected to perform any task. Instead, it simulates the time-evolution of genetic regulation within living organisms under strict conditions. The original model, though very attractive by it's simplicity, suffered from important shortcomings unveiled by the recent advances in genetics and biology. We propose to use these new discoveries to improve the original model. Firstly, we have used artificial topologies believed to be closer to that of gene regulatory networks. We have also studied actual biological organisms, and used parts of their genetic regulatory networks in our models. Secondly, we have addressed the improbable full synchronicity of the event taking place on. Boolean networks and proposed a more biologically plausible cascading scheme. Finally, we tackled the actual Boolean functions of the model, i.e. the specifics of how genes activate according to the activity of upstream genes, and presented a new update function that takes into account the actual promoting and repressing effects of one gene on another. Our improved models demonstrate the expected, biologically sound, behavior of previous GRN model, yet with superior resistance to perturbations. We believe they are one step closer to the biological reality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Achieving a high degree of dependability in complex macro-systems is challenging. Because of the large number of components and numerous independent teams involved, an overview of the global system performance is usually lacking to support both design and operation adequately. A functional failure mode, effects and criticality analysis (FMECA) approach is proposed to address the dependability optimisation of large and complex systems. The basic inductive model FMECA has been enriched to include considerations such as operational procedures, alarm systems. environmental and human factors, as well as operation in degraded mode. Its implementation on a commercial software tool allows an active linking between the functional layers of the system and facilitates data processing and retrieval, which enables to contribute actively to the system optimisation. The proposed methodology has been applied to optimise dependability in a railway signalling system. Signalling systems are typical example of large complex systems made of multiple hierarchical layers. The proposed approach appears appropriate to assess the global risk- and availability-level of the system as well as to identify its vulnerabilities. This enriched-FMECA approach enables to overcome some of the limitations and pitfalls previously reported with classical FMECA approaches.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Many complex systems may be described by not one but a number of complex networks mapped on each other in a multi-layer structure. Because of the interactions and dependencies between these layers, the state of a single layer does not necessarily reflect well the state of the entire system. In this paper we study the robustness of five examples of two-layer complex systems: three real-life data sets in the fields of communication (the Internet), transportation (the European railway system), and biology (the human brain), and two models based on random graphs. In order to cover the whole range of features specific to these systems, we focus on two extreme policies of system's response to failures, no rerouting and full rerouting. Our main finding is that multi-layer systems are much more vulnerable to errors and intentional attacks than they appear from a single layer perspective.

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La gestion des risques est souvent appréhendée par l'utilisation de méthodes linéaires mettant l'accent sur des raisonnements de positionnement et de type causal : à tel événement correspond tel risque et telle conséquence. Une prise en compte des interrelations entre risques est souvent occultée et les risques sont rarement analysés dans leurs dynamiques et composantes non linéaires. Ce travail présente ce que les méthodes systémiques et notamment l'étude des systèmes complexes sont susceptibles d'apporter en matière de compréhension, de management et d'anticipation et de gestion des risques d'entreprise, tant sur le plan conceptuel que de matière appliquée. En partant des définitions relatives aux notions de systèmes et de risques dans différents domaines, ainsi que des méthodes qui sont utilisées pour maîtriser les risques, ce travail confronte cet ensemble à ce qu'apportent les approches d'analyse systémique et de modélisation des systèmes complexes. En mettant en évidence les effets parfois réducteurs des méthodes de prise en compte des risques en entreprise ainsi que les limitations des univers de risques dues, notamment, à des définitions mal adaptées, ce travail propose également, pour la Direction d'entreprise, une palette des outils et approches différentes, qui tiennent mieux compte de la complexité, pour gérer les risques, pour aligner stratégie et management des risques, ainsi que des méthodes d'analyse du niveau de maturité de l'entreprise en matière de gestion des risques. - Risk management is often assessed through linear methods which stress positioning and causal logical frameworks: to such events correspond such consequences and such risks accordingly. Consideration of the interrelationships between risks is often overlooked and risks are rarely analyzed in their dynamic and nonlinear components. This work shows what systemic methods, including the study of complex systems, are likely to bring to knowledge, management, anticipation of business risks, both on the conceptual and the practical sides. Based on the definitions of systems and risks in various areas, as well as methods used to manage risk, this work confronts these concepts with approaches of complex systems analysis and modeling. This work highlights the reducing effects of some business risk analysis methods as well as limitations of risk universes caused in particular by unsuitable definitions. As a result this work also provides chief officers with a range of different tools and approaches which allows them a better understanding of complexity and as such a gain in efficiency in their risk management practices. It results in a better fit between strategy and risk management. Ultimately the firm gains in its maturity of risk management.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent clinical trials with type 2 diabetic patients and the quest of normal glyceamic values, have revealed difficulties and limitations. These too normal glyceamic targets corresponding to the physiological standards are associated with very high rate of hypoglycemia and an increase of mortality. A too simplistic view of treatment: "the lowest, the better is in the diabetes" is no longer defensible. The knowledge from complex systems behavior invites us to search targets adapted to a new state of equilibrium due to loss of self-regulation. These targets should not aim the physiological standards but to be adapted to patient's situation. Shared decision-making and consensus are the two pillars of this new strategy supported by the new ADA-EASD guidelines.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ants (Hymenoptera, Formicidae) represent one of the most successful eusocial taxa in terms of both their geographic distribution and species number. The publication of seven ant genomes within the past year was a quantum leap for socio- and ant genomics. The diversity of social organization in ants makes them excellent model organisms to study the evolution of social systems. Comparing the ant genomes with those of the honeybee, a lineage that evolved eusociality independently from ants, and solitary insects suggests that there are significant differences in key aspects of genome organization between social and solitary insects, as well as among ant species. Altogether, these seven ant genomes open exciting new research avenues and opportunities for understanding the genetic basis and regulation of social species, and adaptive complex systems in general.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bacterial degradation of polycyclic aromatic hydrocarbons (PAHs), ubiquitous contaminants from oil and coal, is typically limited by poor accessibility of the contaminant to the bacteria. In order to measure PAH availability in complex systems, we designed a number of diffusion-based assays with a double-tagged bacterial reporter strain Burkholderia sartisoli RP037-mChe. The reporter strain is capable of mineralizing phenanthrene (PHE) and induces the expression of enhanced green fluorescent protein (eGFP) as a function of the PAH flux to the cell. At the same time, it produces a second autofluorescent protein (mCherry) in constitutive manner. Quantitative epifluorescence imaging was deployed in order to record reporter signals as a function of PAH availability. The reporter strain expressed eGFP proportionally to dosages of naphthalene or PHE in batch liquid cultures. To detect PAH diffusion from solid materials the reporter cells were embedded in 2 cm-sized agarose gel patches, and fluorescence was recorded over time for both markers as a function of distance to the PAH source. eGFP fluorescence gradients measured on known amounts of naphthalene or PHE served as calibration for quantifying PAH availability from contaminated soils. To detect reporter gene expression at even smaller diffusion distances, we mixed and immobilized cells with contaminated soils in an agarose gel. eGFP fluorescence measurements confirmed gel patch diffusion results that exposure to 2-3 mg lampblack soil gave four times higher expression than to material contaminated with 10 or 1 (mg PHE) g(-1).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Because of the increase in workplace automation and the diversification of industrial processes, workplaces have become more and more complex. The classical approaches used to address workplace hazard concerns, such as checklists or sequence models, are, therefore, of limited use in such complex systems. Moreover, because of the multifaceted nature of workplaces, the use of single-oriented methods, such as AEA (man oriented), FMEA (system oriented), or HAZOP (process oriented), is not satisfactory. The use of a dynamic modeling approach in order to allow multiple-oriented analyses may constitute an alternative to overcome this limitation. The qualitative modeling aspects of the MORM (man-machine occupational risk modeling) model are discussed in this article. The model, realized on an object-oriented Petri net tool (CO-OPN), has been developed to simulate and analyze industrial processes in an OH&S perspective. The industrial process is modeled as a set of interconnected subnets (state spaces), which describe its constitutive machines. Process-related factors are introduced, in an explicit way, through machine interconnections and flow properties. While man-machine interactions are modeled as triggering events for the state spaces of the machines, the CREAM cognitive behavior model is used in order to establish the relevant triggering events. In the CO-OPN formalism, the model is expressed as a set of interconnected CO-OPN objects defined over data types expressing the measure attached to the flow of entities transiting through the machines. Constraints on the measures assigned to these entities are used to determine the state changes in each machine. Interconnecting machines implies the composition of such flow and consequently the interconnection of the measure constraints. This is reflected by the construction of constraint enrichment hierarchies, which can be used for simulation and analysis optimization in a clear mathematical framework. The use of Petri nets to perform multiple-oriented analysis opens perspectives in the field of industrial risk management. It may significantly reduce the duration of the assessment process. But, most of all, it opens perspectives in the field of risk comparisons and integrated risk management. Moreover, because of the generic nature of the model and tool used, the same concepts and patterns may be used to model a wide range of systems and application fields.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objective of this essay is to reflect on a possible relation between entropy and emergence. A qualitative, relational approach is followed. We begin by highlighting that entropy includes the concept of dispersal, relevant to our enquiry. Emergence in complex systems arises from the coordinated behavior of their parts. Coordination in turn necessitates recognition between parts, i.e., information exchange. What will be argued here is that the scope of recognition processes between parts is increased when preceded by their dispersal, which multiplies the number of encounters and creates a richer potential for recognition. A process intrinsic to emergence is dissolvence (aka submergence or top-down constraints), which participates in the information-entropy interplay underlying the creation, evolution and breakdown of higher-level entities.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Division of labor in social insects is determinant to their ecological success. Recent models emphasize that division of labor is an emergent property of the interactions among nestmates obeying to simple behavioral rules. However, the role of evolution in shaping these rules has been largely neglected. Here, we investigate a model that integrates the perspectives of self-organization and evolution. Our point of departure is the response threshold model, where we allow thresholds to evolve. We ask whether the thresholds will evolve to a state where division of labor emerges in a form that fits the needs of the colony. We find that division of labor can indeed evolve through the evolutionary branching of thresholds, leading to workers that differ in their tendency to take on a given task. However, the conditions under which division of labor evolves depend on the strength of selection on the two fitness components considered: amount of work performed and on worker distribution over tasks. When selection is strongest on the amount of work performed, division of labor evolves if switching tasks is costly. When selection is strongest on worker distribution, division of labor is less likely to evolve. Furthermore, we show that a biased distribution (like 3:1) of workers over tasks is not easily achievable by a threshold mechanism, even under strong selection. Contrary to expectation, multiple matings of colony foundresses impede the evolution of specialization. Overall, our model sheds light on the importance of considering the interaction between specific mechanisms and ecological requirements to better understand the evolutionary scenarios that lead to division of labor in complex systems. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00265-012-1343-2) contains supplementary material, which is available to authorized users.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Due to the advances in sensor networks and remote sensing technologies, the acquisition and storage rates of meteorological and climatological data increases every day and ask for novel and efficient processing algorithms. A fundamental problem of data analysis and modeling is the spatial prediction of meteorological variables in complex orography, which serves among others to extended climatological analyses, for the assimilation of data into numerical weather prediction models, for preparing inputs to hydrological models and for real time monitoring and short-term forecasting of weather.In this thesis, a new framework for spatial estimation is proposed by taking advantage of a class of algorithms emerging from the statistical learning theory. Nonparametric kernel-based methods for nonlinear data classification, regression and target detection, known as support vector machines (SVM), are adapted for mapping of meteorological variables in complex orography.With the advent of high resolution digital elevation models, the field of spatial prediction met new horizons. In fact, by exploiting image processing tools along with physical heuristics, an incredible number of terrain features which account for the topographic conditions at multiple spatial scales can be extracted. Such features are highly relevant for the mapping of meteorological variables because they control a considerable part of the spatial variability of meteorological fields in the complex Alpine orography. For instance, patterns of orographic rainfall, wind speed and cold air pools are known to be correlated with particular terrain forms, e.g. convex/concave surfaces and upwind sides of mountain slopes.Kernel-based methods are employed to learn the nonlinear statistical dependence which links the multidimensional space of geographical and topographic explanatory variables to the variable of interest, that is the wind speed as measured at the weather stations or the occurrence of orographic rainfall patterns as extracted from sequences of radar images. Compared to low dimensional models integrating only the geographical coordinates, the proposed framework opens a way to regionalize meteorological variables which are multidimensional in nature and rarely show spatial auto-correlation in the original space making the use of classical geostatistics tangled.The challenges which are explored during the thesis are manifolds. First, the complexity of models is optimized to impose appropriate smoothness properties and reduce the impact of noisy measurements. Secondly, a multiple kernel extension of SVM is considered to select the multiscale features which explain most of the spatial variability of wind speed. Then, SVM target detection methods are implemented to describe the orographic conditions which cause persistent and stationary rainfall patterns. Finally, the optimal splitting of the data is studied to estimate realistic performances and confidence intervals characterizing the uncertainty of predictions.The resulting maps of average wind speeds find applications within renewable resources assessment and opens a route to decrease the temporal scale of analysis to meet hydrological requirements. Furthermore, the maps depicting the susceptibility to orographic rainfall enhancement can be used to improve current radar-based quantitative precipitation estimation and forecasting systems and to generate stochastic ensembles of precipitation fields conditioned upon the orography.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents the general regression neural networks (GRNN) as a nonlinear regression method for the interpolation of monthly wind speeds in complex Alpine orography. GRNN is trained using data coming from Swiss meteorological networks to learn the statistical relationship between topographic features and wind speed. The terrain convexity, slope and exposure are considered by extracting features from the digital elevation model at different spatial scales using specialised convolution filters. A database of gridded monthly wind speeds is then constructed by applying GRNN in prediction mode during the period 1968-2008. This study demonstrates that using topographic features as inputs in GRNN significantly reduces cross-validation errors with respect to low-dimensional models integrating only geographical coordinates and terrain height for the interpolation of wind speed. The spatial predictability of wind speed is found to be lower in summer than in winter due to more complex and weaker wind-topography relationships. The relevance of these relationships is studied using an adaptive version of the GRNN algorithm which allows to select the useful terrain features by eliminating the noisy ones. This research provides a framework for extending the low-dimensional interpolation models to high-dimensional spaces by integrating additional features accounting for the topographic conditions at multiple spatial scales. Copyright (c) 2012 Royal Meteorological Society.