24 resultados para Colloidal particle
em Université de Lausanne, Switzerland
Resumo:
BACKGROUND: Highway maintenance workers are constantly and simultaneously exposed to traffic-related particle and noise emissions, and both have been linked to increased cardiovascular morbidity and mortality in population-based epidemiology studies. OBJECTIVES: We aimed to investigate short-term health effects related to particle and noise exposure. METHODS: We monitored 18 maintenance workers, during as many as five 24-hour periods from a total of 50 observation days. We measured their exposure to fine particulate matter (PM2.5), ultrafine particles, noise, and the cardiopulmonary health endpoints: blood pressure, pro-inflammatory and pro-thrombotic markers in the blood, lung function and fractional exhaled nitric oxide (FeNO) measured approximately 15 hours post-work. Heart rate variability was assessed during a sleep period approximately 10 hours post-work. RESULTS: PM2.5 exposure was significantly associated with C-reactive protein and serum amyloid A, and negatively associated with tumor necrosis factor α. None of the particle metrics were significantly associated with von Willebrand factor or tissue factor expression. PM2.5 and work noise were associated with markers of increased heart rate variability, and with increased HF and LF power. Systolic and diastolic blood pressure on the following morning were significantly associated with noise exposure after work, and non-significantly associated with PM2.5. We observed no significant associations between any of the exposures and lung function or FeNO. CONCLUSIONS: Our findings suggest that exposure to particles and noise during highway maintenance work might pose a cardiovascular health risk. Actions to reduce these exposures could lead to better health for this population of workers.
Resumo:
A geogenic origin has been proposed in the aetiology of non-filarial elephantiasis of the feet and legs, recently renamed podoconiosis. Soil collected in an area of the Ethiopian Rift Valley, the borough of Ocholo, known for its high prevalence of podoconiosis (5.06%), has been submitted to mineral analysis. High values of sulphur (S), cerium (Ce), lanthanum (La) and neodymium (Nd), typical for basaltic bedrocks, were found. Of special interest were the values for zirconium (Zr) and beryllium (Be), 618 +/- 87 ppm and 4.6 +/- 0.5 ppm respectively, twice as high as those recorded for soils sampled in neighbouring areas where the prevalence of podoconiosis is low. To be noted also, a high content in vanadium, above 250 ppm, in half of the soil samples collected in this region. Year-long exposure of unprotected feet to Zr and Be, known for their ability to induce granuloma formation in the lymphoid tissue of man, and present in a clay rich in colloidal silica particle, highly abrasive to skin, is doubtlessly a factor involved in the development of lymph node sclerosis leading to elephantiasis.
Resumo:
Due to the eye's specific anatomical and physiological conformation, the treatment of eye diseases is a real challenge for pharmaceutical therapy. The presence of efficient protective barriers (i.e., the conjunctival and corneal membranes) and protective mechanisms (i.e., blinking and nasolachrymal drainage) makes this organ particularly impervious to local drug therapy. To overcome these issues, numerous strategies have been envisioned using pharmaceutical technology. Many formulations currently on the market or still under development are emulsions or colloidal systems intended to enhance precorneal residence time and corneal penetration, causing a consequent increase in drug bioavailability after instillation. After a review of some recent developments in the field of cyclosporin A formulations for the eye, a novel micellar formulation of cyclosporine A based on a diblock methoxy-poly(ethylene glycol)-hexysubstituted poly(lactides) (MPEG-hexPLA) is described.
Resumo:
We investigated the use of in situ implant formation that incorporates superparamagnetic iron oxide nanoparticles (SPIONs) as a form of minimally invasive treatment of cancer lesions by magnetically induced local hyperthermia. We developed injectable formulations that form gels entrapping magnetic particles into a tumor. We used SPIONs embedded in silica microparticles to favor syringeability and incorporated the highest proportion possible to allow large heating capacities. Hydrogel, single-solvent organogel and cosolvent (low-toxicity hydrophilic solvent) organogel formulations were injected into human cancer tumors xenografted in mice. The thermoreversible hydrogels (poloxamer, chitosan), which accommodated 20% w/v of the magnetic microparticles, proved to be inadequate. Alginate hydrogels, however, incorporated 10% w/v of the magnetic microparticles, and the external gelation led to strong implants localizing to the tumor periphery, whereas internal gelation failed in situ. The organogel formulations, which consisted of precipitating polymers dissolved in single organic solvents, displayed various microstructures. A 8% poly(ethylene-vinyl alcohol) in DMSO containing 40% w/v of magnetic microparticles formed the most suitable implants in terms of tumor casting and heat delivery. Importantly, it is of great clinical interest to develop cosolvent formulations with up to 20% w/v of magnetic microparticles that show reduced toxicity and centered tumor implantation.
Resumo:
This work is part of a continuing goal to improve the multimetal deposition technique (MMD), as well as the single-metal deposition (SMD), to make them more robust, more user-friendly, and less labour-intensive. Indeed, two major limitations of the MMD/SMD were identified: (1) the synthesis of colloidal gold, which is quite labour-intensive, and (2) the sharp decrease in efficiency observed when the pH of the working solution is increased above pH 3. About the synthesis protocol, it has been simplified so that there is no more need to monitor the temperature during the synthesis. The efficiency has also been improved by adding aspartic acid, conjointly with sodium citrate, during the synthesis of colloidal gold. This extends the range of pH for which it is possible to detect fingermarks in the frame of the MMD/SMD. The operational range is now extended from 2 to 6.7, compared to 2-3 for the previous formulations. The increased robustness of the working solution may improve the ability of the technique to process substrates that tend to increase the pH of the solution after their immersion.
Resumo:
Part I of this series of articles focused on the construction of graphical probabilistic inference procedures, at various levels of detail, for assessing the evidential value of gunshot residue (GSR) particle evidence. The proposed models - in the form of Bayesian networks - address the issues of background presence of GSR particles, analytical performance (i.e., the efficiency of evidence searching and analysis procedures) and contamination. The use and practical implementation of Bayesian networks for case pre-assessment is also discussed. This paper, Part II, concentrates on Bayesian parameter estimation. This topic complements Part I in that it offers means for producing estimates useable for the numerical specification of the proposed probabilistic graphical models. Bayesian estimation procedures are given a primary focus of attention because they allow the scientist to combine (his/her) prior knowledge about the problem of interest with newly acquired experimental data. The present paper also considers further topics such as the sensitivity of the likelihood ratio due to uncertainty in parameters and the study of likelihood ratio values obtained for members of particular populations (e.g., individuals with or without exposure to GSR).
Resumo:
Particle physics studies highly complex processes which cannot be directly observed. Scientific realism claims that we are nevertheless warranted in believing that these processes really occur and that the objects involved in them really exist. This dissertation defends a version of scientific realism, called causal realism, in the context of particle physics. I start by introducing the central theses and arguments in the recent philosophical debate on scientific realism (chapter 1), with a special focus on an important presupposition of the debate, namely common sense realism. Chapter 2 then discusses entity realism, which introduces a crucial element into the debate by emphasizing the importance of experiments in defending scientific realism. Most of the chapter is concerned with Ian Hacking's position, but I also argue that Nancy Cartwright's version of entity realism is ultimately preferable as a basis for further development. In chapter 3,1 take a step back and consider the question whether the realism debate is worth pursuing at all. Arthur Fine has given a negative answer to that question, proposing his natural ontologica! attitude as an alternative to both realism and antirealism. I argue that the debate (in particular the realist side of it) is in fact less vicious than Fine presents it. The second part of my work (chapters 4-6) develops, illustrates and defends causal realism. The key idea is that inference to the best explanation is reliable in some cases, but not in others. Chapter 4 characterizes the difference between these two kinds of cases in terms of three criteria which distinguish causal from theoretical warrant. In order to flesh out this distinction, chapter 5 then applies it to a concrete case from the history of particle physics, the discovery of the neutrino. This case study shows that the distinction between causal and theoretical warrant is crucial for understanding what it means to "directly detect" a new particle. But the distinction is also an effective tool against what I take to be the presently most powerful objection to scientific realism: Kyle Stanford's argument from unconceived alternatives. I respond to this argument in chapter 6, and I illustrate my response with a discussion of Jean Perrin's experimental work concerning the atomic hypothesis. In the final part of the dissertation, I turn to the specific challenges posed to realism by quantum theories. One of these challenges comes from the experimental violations of Bell's inequalities, which indicate a failure of locality in the quantum domain. I show in chapter 7 how causal realism can further our understanding of quantum non-locality by taking account of some recent experimental results. Another challenge to realism in quantum mechanics comes from delayed-choice experiments, which seem to imply that certain aspects of what happens in an experiment can be influenced by later choices of the experimenter. Chapter 8 analyzes these experiments and argues that they do not warrant the antirealist conclusions which some commentators draw from them. It pays particular attention to the case of delayed-choice entanglement swapping and the corresponding question whether entanglement is a real physical relation. In chapter 9,1 finally address relativistic quantum theories. It is often claimed that these theories are incompatible with a particle ontology, and this calls into question causal realism's commitment to localizable and countable entities. I defend the commitments of causal realism against these objections, and I conclude with some remarks connecting the interpretation of quantum field theory to more general metaphysical issues confronting causal realism.
Resumo:
In the Alps, debris flow deposits generally contain < 5% clay-size particles, and the role of the surface-charged < 2 mu m particles is often neglected, although these particles may have a significant impact on the rheological properties of the interstitial fluid. The objective of this study was to compare debris flow deposits and parent materials from two neighbouring catchments of the Swiss Alps, with special emphasis on the colloidal constituents. The catchments are small in area (4 km(2)), 2.5 km long, similar in morphology, but different in geology. The average slopes are 35-40%. The catchments were monitored for debris flow events and mapped for surface aspect and erosion activity. Debris flow deposits and parent materials were sampled, the clay and silt fractions extracted and the bulk density, < 2 mm fraction bulk density, particle size distribution, chemical composition, cation exchange capacity (CEC) and mineralogy analysed. The results show that the deposits are similar to the parent screes in terms of chemical composition, but differ in terms of: (i) particle size distribution; and (ii) mineralogy, reactivity and density of the < 2 mm fraction. In this fraction, compared with the parent materials the deposits show dense materials enriched in coarse monocrystalline particles, of which the smallest and more reactive particles were leached. The results suggest that deposit samples should not be considered as representative of source or flow materials, particularly with respect to their physical properties.
Resumo:
Six gases (N((CH3)3), NH2OH, CF3COOH, HCl, NO2, O3) were selected to probe the surface of seven combustion aerosol (amorphous carbon, flame soot) and three types of TiO2 nanoparticles using heterogeneous, that is gas-surface reactions. The gas uptake to saturation of the probes was measured under molecular flow conditions in a Knudsen flow reactor and expressed as a density of surface functional groups on a particular aerosol, namely acidic (carboxylic) and basic (conjugated oxides such as pyrones, N-heterocycles) sites, carbonyl (R1-C(O)-R2) and oxidizable (olefinic, -OH) groups. The limit of detection was generally well below 1% of a formal monolayer of adsorbed probe gas. With few exceptions most investigated aerosol samples interacted with all probe gases which points to the coexistence of different functional groups on the same aerosol surface such as acidic and basic groups. Generally, the carbonaceous particles displayed significant differences in surface group density: Printex 60 amorphous carbon had the lowest density of surface functional groups throughout, whereas Diesel soot recovered from a Diesel particulate filter had the largest. The presence of basic oxides on carbonaceous aerosol particles was inferred from the ratio of uptakes of CF3COOH and HCl owing to the larger stability of the acetate compared to the chloride counterion in the resulting pyrylium salt. Both soots generated from a rich and a lean hexane diffusion flame had a large density of oxidizable groups similar to amorphous carbon FS 101. TiO2 15 had the lowest density of functional groups among the three studied TiO2 nanoparticles for all probe gases despite the smallest size of its primary particles. The used technique enabled the measurement of the uptake probability of the probe gases on the various supported aerosol samples. The initial uptake probability, g0, of the probe gas onto the supported nanoparticles differed significantly among the various investigated aerosol samples but was roughly correlated with the density of surface groups, as expected. [Authors]